Depolarizing GABAergic conductances regulate the balance of excitation to inhibition in the developing retinotectal circuit in vivo

被引:138
作者
Akerman, Colin J. [1 ]
Cline, Hollis T. [1 ]
机构
[1] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA
基金
英国惠康基金;
关键词
synaptic development; activity-dependent; intracellular chloride; GABAergic transmission; glutamatergic transmission; visual system;
D O I
10.1523/JNEUROSCI.0319-06.2006
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neurotransmission during development regulates synaptic maturation in neural circuits, but the contribution of different neurotransmitter systems is unclear. We investigated the role of GABA(A) receptor-mediated Cl- conductances in the development of synaptic responses in the Xenopus visual system. Intracellular Cl- concentration ([Cl-](i)) was found to be high in immature tectal neurons and then falls over a period of several weeks. GABAergic synapses are present at early stages of tectal development and, when activated by optic nerve stimulation or visual stimuli, induce sustained depolarizing Cl- conductances that facilitate retinotectal transmission by NMDA receptors. To test whether depolarizing GABAergic inputs cooperate with NMDA receptors during activity-dependent maturation of glutamatergic synapses, we prematurely reduced [Cl-](i) in tectal neurons in vivo by expressing the Cl- transporter KCC2. This blocked the normal developmental increase in AMPA receptor-mediated retinotectal transmission and increased GABAergic synaptic input to tectal neurons. Therefore, depolarizing GABAergic transmission plays a pivotal role in the maturation of excitatory transmission and controls the balance of excitation and inhibition in the developing retinotectal circuit.
引用
收藏
页码:5117 / 5130
页数:14
相关论文
共 59 条
[1]   Chronic NMDA exposure accelerates development of GABAergic inhibition in the superior colliculus [J].
Aamodt, SM ;
Shi, J ;
Colonnese, MT ;
Veras, W ;
Constantine-Paton, M .
JOURNAL OF NEUROPHYSIOLOGY, 2000, 83 (03) :1580-1591
[2]   Visually driven regulation of intrinsic neuronal excitability improves stimulus detection in vivo [J].
Aizenman, CD ;
Akerman, CJ ;
Jensen, KR ;
Cline, HT .
NEURON, 2003, 39 (05) :831-842
[3]   DIFFERENT VOLTAGE-DEPENDENT THRESHOLDS FOR INDUCING LONG-TERM DEPRESSION AND LONG-TERM POTENTIATION IN SLICES OF RAT VISUAL-CORTEX [J].
ARTOLA, A ;
BROCHER, S ;
SINGER, W .
NATURE, 1990, 347 (6288) :69-72
[4]  
ASCHER P, 1988, J PHYSIOL-LONDON, V399, P247
[5]   Excitatory actions of GABA during development: The nature of the nurture [J].
Ben-Ari, Y .
NATURE REVIEWS NEUROSCIENCE, 2002, 3 (09) :728-739
[6]   GIANT SYNAPTIC POTENTIALS IN IMMATURE RAT CA3 HIPPOCAMPAL-NEURONS [J].
BENARI, Y ;
CHERUBINI, E ;
CORRADETTI, R ;
GAIARSA, JL .
JOURNAL OF PHYSIOLOGY-LONDON, 1989, 416 :303-325
[7]   Control of excitatory and inhibitory synapse formation by neuroligins [J].
Chih, B ;
Engelman, H ;
Scheiffele, P .
SCIENCE, 2005, 307 (5713) :1324-1328
[8]   Early expression of KCC2 in rat hippocampal cultures augments expression of functional GABA synapses [J].
Chudotvorova, I ;
Ivanov, A ;
Rama, S ;
Hübner, CA ;
Pellegrino, C ;
Ben-Ari, Y ;
Medina, I .
JOURNAL OF PHYSIOLOGY-LONDON, 2005, 566 (03) :671-679
[9]   PATTERNED ACTIVITY, SYNAPTIC CONVERGENCE, AND THE NMDA RECEPTOR IN DEVELOPING VISUAL PATHWAYS [J].
CONSTANTINEPATON, M ;
CLINE, HT ;
DEBSKI, E .
ANNUAL REVIEW OF NEUROSCIENCE, 1990, 13 :129-154
[10]   Ca2+ signaling requirements for long-term depression in the hippocampus [J].
Cummings, JA ;
Mulkey, RM ;
Nicoll, RA ;
Malenka, RC .
NEURON, 1996, 16 (04) :825-833