Noninvasive Molecular Imaging of the Enhanced Permeability and Retention Effect by 64Cu-Liposomes: In vivo Correlations with 68Ga-RGD, Fluid Pressure, Diffusivity and 18F-FDG

被引:17
作者
Borresen, Betina [1 ]
Hansen, Anders Elias [2 ,3 ]
Fliedner, Frederikke Petrine [2 ]
Henriksen, Jonas Rosager [3 ]
Elema, Dennis Ringkjobing [3 ,4 ]
Brandt-Larsen, Malene [5 ]
Kristensen, Lotte Kellemann [2 ,4 ,5 ,6 ]
Kristensen, Annemarie Thuri [1 ,4 ,5 ,6 ]
Andresen, Thomas Lars [3 ]
Kjaer, Andreas [2 ,5 ]
机构
[1] Univ Copenhagen, Dept Vet Clin Sci, Fac Hlth & Med Sci, DK-1870 Frederiksberg C, Denmark
[2] Univ Copenhagen, Fac Hlth & Med Sci, Dept Biomed Sci, Cluster Mol Imaging, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
[3] Tech Univ Denmark, Ctr Nanomed & Theranost, DTU Hlth Technol, DK-2800 Lyngby, Denmark
[4] Tech Univ Denmark, Ctr Nucl Technol, DTU Hlth Technol, Hevesy Lab, DK-4000 Roskilde, Denmark
[5] Copenhagen Univ Hosp, Dept Clin Physiol, Nucl Med & PET, DK-2100 Copenhagen O, Denmark
[6] Minerva Imaging, DK-2200 Copenhagen, Denmark
来源
INTERNATIONAL JOURNAL OF NANOMEDICINE | 2020年 / 15卷
关键词
EPR effect; liposome; positron emission tomography; neoangiogenesis; ACCELERATED BLOOD CLEARANCE; VASCULAR-PERMEABILITY; INTEGRIN ALPHA(V)BETA(3); LIPOSOMAL DOXORUBICIN; REPEATED INJECTIONS; TUMOR XENOGRAFT; PET TRACERS; CANCER; ACCUMULATION; CHALLENGE;
D O I
10.2147/IJN.S239172
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Background: The accumulation of liposome encapsulated chemotherapy in solid cancers is dependent on the presence of the enhanced permeability and retention (EPR) effect. Positron emission tomography (PET) imaging with a liposome encapsulated radioisotope, such as liposome encapsulated Cu-64 (Cu-64-liposome) may help to identify tumors with high liposome accumulation, and thereby stratify patients based on expected benefit from liposomal chemotherapy. However, intravenous administration of liposomes without a cytotoxic content is complicated by the accelerated blood clearance (ABC) phenomenon for succeeding therapeutic liposome dosing. Alternative markers for assessing the tumor's EPR level are therefore warranted. Materials and Methods: To increase our understanding of EPR variations and to ultimately identify an alternative marker for the EPR effect, we investigated the correlation between Cu-64-liposome PET/CT (EPR effect) and Ga-68-RGD PET/CT (neoangiogenesis), F-18-FDG PET/CT (glycolysis), diffusion-weighted MRI (diffusivity) and interstitial fluid pressure in two experimental cancer models (CT26 and COLO 205). Results: Cu-64-liposome and Ga-68-RGD SUVmax displayed a significant moderate correlation, however, none of the other parameters evaluated displayed significant correlations. These results indicate that differences in neoangiogenesis may explain some EPR variability, however, as correlations were only moderate and not observed for SUVmean,Ga- 68-RGD is probably insufficient to serve as a stand-alone surrogate marker for quantifying the EPR effect and stratifying patients.
引用
收藏
页码:8571 / 8581
页数:11
相关论文
共 47 条
  • [1] The accelerated blood clearance (ABC) phenomenon: Clinical challenge and approaches to manage
    Abu Lila, Amr S.
    Kiwada, Hiroshi
    Ishida, Tatsuhiro
    [J]. JOURNAL OF CONTROLLED RELEASE, 2013, 172 (01) : 38 - 47
  • [2] Tumor-type-dependent vascular permeability constitutes a potential impediment to the therapeutic efficacy of liposomal oxaliplatin
    Abu Lila, Amr S.
    Matsumoto, Haruna
    Doi, Yusuke
    Nakamura, Hiroyuki
    Ishida, Tatsuhiro
    Kiwada, Hiroshi
    [J]. EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2012, 81 (03) : 524 - 531
  • [3] Theranostic Imaging May Vaccinate against the Therapeutic Benefit of Long Circulating PEGylated Liposomes and Change Cargo Pharmacokinetics
    Borresen, Betina
    Henriksen, Jonas R.
    Clergeaud, Gael
    Jorgensen, Jennifer S.
    Melander, Fredrik
    Elema, Dennis R.
    Szebeni, Janos
    Engelholm, Svend Aage
    Kristensen, Annemarie T.
    Kjaer, Andreas
    Andresen, Thomas L.
    Hansen, Anders E.
    [J]. ACS NANO, 2018, 12 (11) : 11386 - 11398
  • [4] Integrin α3β1, a Novel Receptor for α3(IV) noncollagenous domain and a trans-dominant inhibitor for integrin αvβ3
    Borza, Corina M.
    Pozzi, Ambra
    Borza, Dorin-Bogdan
    Pedchenko, Vadim
    Hellmark, Thomas
    Hudson, Billy G.
    Zent, Roy
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (30) : 20932 - 20939
  • [5] BOUCHER Y, 1990, CANCER RES, V50, P4478
  • [6] TUMOR IMAGING WITH LABELED LIPOSOMES
    BRIELE, B
    HOTZE, A
    OEHR, P
    BIERSACK, HJ
    ROSANOWSKI, F
    GORGULLA, W
    HERBERHOLD, C
    HARTLAPP, JP
    [J]. LANCET, 1990, 336 (8719) : 875 - 876
  • [7] REQUIREMENT OF VASCULAR INTEGRIN ALPHA(V)BETA(3) FOR ANGIOGENESIS
    BROOKS, PC
    CLARK, RAF
    CHERESH, DA
    [J]. SCIENCE, 1994, 264 (5158) : 569 - 571
  • [8] RGD-based PET tracers for imaging receptor integrin αvβ3 expression
    Cai, Hancheng
    Conti, Peter S.
    [J]. JOURNAL OF LABELLED COMPOUNDS & RADIOPHARMACEUTICALS, 2013, 56 (05) : 264 - 279
  • [9] Spatial and temporal mapping of heterogeneity in liposome uptake and microvascular distribution in an orthotopic tumor xenograft model
    Ekdawi, Sandra N.
    Stewart, James M. P.
    Dunne, Michael
    Stapleton, Shawn
    Mitsakakis, Nicholas
    Dou, Yannan N.
    Jaffray, David A.
    Allen, Christine
    [J]. JOURNAL OF CONTROLLED RELEASE, 2015, 207 : 101 - 111
  • [10] Eliceiri BP, 2000, CANCER J, V6, pS245