Semi-Automated Image Segmentation of Peri-Prostatic Tissue on MRI and Radiomics Features Stability: A Feasibility Study for Locally Advanced Prostate Cancer Detection

被引:0
作者
Stanzione, Arnaldo [1 ]
Cuocolo, Renato [2 ]
Califano, Gianluigi [3 ]
Ponsiglione, Andrea [1 ]
Ruvolo, Claudia Colla [1 ]
Spadarella, Gaia [1 ]
De Giorgi, Marco [1 ]
Nessuno, Francesca [1 ]
Longo, Nicola [3 ]
Imbriaco, Massimo [1 ]
机构
[1] Univ Naples Federico II, Dept Adv Biomed Sci, Naples, Italy
[2] Univ Salerno, Dept Med Surg & Dent, Baronissi, Italy
[3] Univ Naples Federico II, Dept Neurosci Reprod Sci & Odontostomatol, Naples, Italy
来源
2022 IEEE INTERNATIONAL CONFERENCE ON METROLOGY FOR EXTENDED REALITY, ARTIFICIAL INTELLIGENCE AND NEURAL ENGINEERING (METROXRAINE) | 2022年
关键词
radiomics; machine learning; MRI; segmentation; MULTIPARAMETRIC MRI; ACCURACY;
D O I
10.1109/MetroXRAINE54828.2022.9967607
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The role of the tumor peripheral microenvironment to establish prostate cancer invasiveness is gaining interest. Radiomics is a rapidly growing research field, however there are still many methodological challenges to guarantee robustness and reproducibility of the models. We aimed to verify the feasibility of a semi-automated segmentation strategy for periprostatic tissue on axial T2-weighted images from 30 magnetic resonance imaging scans, test stability of hand-crafted radiomics features to multiple segmentation and their potential value in identification of extracapsular tumor extension using a machine learning approach. 1274 radiomics features were extracted from each volume of interest, with less than half (40 %) resulting stable at the ICC analysis. The trained Naive Bayesian model correctly classified 63 % of instances aggregating the cross-validation data (AUC = 0.68). Although the performance of our machine learning model did not reach optimal results, the proposed segmentation approach could represent a facilitator for future research in the field.
引用
收藏
页码:641 / 645
页数:5
相关论文
共 32 条
[1]   Multiparametric Magnetic Resonance Imaging-Based Peritumoral Radiomics for Preoperative Prediction of the Presence of Extracapsular Extension With Prostate Cancer [J].
Bai, Honglin ;
Xia, Wei ;
Ji, Xuefu ;
He, Dong ;
Zhao, Xingyu ;
Bao, Jie ;
Zhou, Jian ;
Wei, Xuedong ;
Huang, Yuhua ;
Li, Qiong ;
Gao, Xin .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 54 (04) :1222-1230
[2]   MRI index lesion radiomics and machine learning for detection of extraprostatic extension of disease: a multicenter study [J].
Cuocolo, Renato ;
Stanzione, Arnaldo ;
Faletti, Riccardo ;
Gatti, Marco ;
Calleris, Giorgio ;
Fornari, Alberto ;
Gentile, Francesco ;
Motta, Aurelio ;
Dell'Aversana, Serena ;
Creta, Massimiliano ;
Longo, Nicola ;
Gontero, Paolo ;
Cirillo, Stefano ;
Fonio, Paolo ;
Imbriaco, Massimo .
EUROPEAN RADIOLOGY, 2021, 31 (10) :7575-7583
[3]   Deep Learning Whole-Gland and Zonal Prostate Segmentation on a Public MRI Dataset [J].
Cuocolo, Renato ;
Comelli, Albert ;
Stefano, Alessandro ;
Benfante, Viviana ;
Dahiya, Navdeep ;
Stanzione, Arnaldo ;
Castaldo, Anna ;
De Lucia, Davide Raffaele ;
Yezzi, Anthony ;
Imbriaco, Massimo .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 54 (02) :452-459
[4]   Clinically Significant Prostate Cancer Detection With Biparametric MRI: A Systematic Review and Meta-Analysis [J].
Cuocolo, Renato ;
Verde, Francesco ;
Ponsiglione, Andrea ;
Romeo, Valeria ;
Petretta, Mario ;
Imbriaco, Massimo ;
Stanzione, Arnaldo .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2021, 216 (03) :608-621
[5]   Advanced Imaging Analysis in Prostate MRI: Building a Radiomic Signature to Predict Tumor Aggressiveness [J].
Damascelli, Anna ;
Gallivanone, Francesca ;
Cristel, Giulia ;
Cava, Claudia ;
Interlenghi, Matteo ;
Esposito, Antonio ;
Brembilla, Giorgio ;
Briganti, Alberto ;
Montorsi, Francesco ;
Castiglioni, Isabella ;
De Cobelli, Francesco .
DIAGNOSTICS, 2021, 11 (04)
[6]   Accuracy of Magnetic Resonance Imaging for Local Staging of Prostate Cancer: A Diagnostic Meta-analysis [J].
de Rooij, Maarten ;
Hamoen, Esther H. J. ;
Witjes, J. Alfred ;
Barentsz, Jelle O. ;
Rovers, Maroeska M. .
EUROPEAN UROLOGY, 2016, 70 (02) :233-245
[7]   Accuracy of Multiparametric MRI for Prostate Cancer Detection: A Meta-Analysis [J].
de Rooij, Maarten ;
Hamoen, Esther H. J. ;
Futterer, Jurgen J. ;
Barentsz, Jelle O. ;
Rovers, Maroeska M. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2014, 202 (02) :343-351
[8]   Multiparametric Magnetic Resonance Imaging in the Detection of Prostate Cancer [J].
Durmus, T. ;
Baur, A. ;
Hamm, B. .
AKTUELLE UROLOGIE, 2014, 45 (02) :119-126
[9]  
Eibe F., 2016, WEKA WORKBENCH ONLIN, VFourth, DOI DOI 10.1007/s10796-008-9131-2
[10]   Multiparametric MRI and Machine Learning Based Radiomic Models for Preoperative Prediction of Multiple Biological Characteristics in Prostate Cancer [J].
Fan, Xuhui ;
Xie, Ni ;
Chen, Jingwen ;
Li, Tiewen ;
Cao, Rong ;
Yu, Hongwei ;
He, Meijuan ;
Wang, Zilin ;
Wang, Yihui ;
Liu, Hao ;
Wang, Han ;
Yin, Xiaorui .
FRONTIERS IN ONCOLOGY, 2022, 12