Basics on growth orders of polymonogenic functions

被引:6
作者
De Almeida, R. [1 ]
Krausshar, R. S. [2 ]
机构
[1] Univ Tras Os Montes & Alto Douro, Sch Sci & Technol, Dept Math, UTAD, P-5000801 Vila Real, Portugal
[2] Univ Erfurt, Fachgebiet Math, Erziehungswissensch Fak, Nordhauser Str 63, D-99089 Erfurt, Germany
关键词
iterated generalized Cauchy-Riemann equations; polymonogenic functions; asymptotic growth behaviour of generalized analytic functions; growth orders; growth type; ENTIRE MONOGENIC FUNCTIONS; CAUCHY-RIEMANN EQUATIONS; ASYMPTOTIC GROWTH; ITERATED DIRAC; SERIES;
D O I
10.1080/17476933.2015.1031121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce generalizations of the classical growth order and the growth type of analytic functions in the context of polymonogenic functions. Polymonogenic functions are null-solutions of higher integer order iterates of a generalized higher dimensional Cauchy-Riemann operator. One of the main goals is to prove generalizations of the famous Lindelof-Pringsheim theorem linking explicitly these growth orders and growth types with the Taylor series coefficients in the context of this function class.
引用
收藏
页码:1480 / 1504
页数:25
相关论文
共 21 条
[1]   On the order of basic series representing Clifford valued functions [J].
Abul-Ez, MA ;
Constales, D .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 142 (2-3) :575-584
[2]  
Brackx F., 1976, Res. Notes Math., V8, P22
[3]   On the growth type of entire monogenic functions [J].
Constales, D. ;
De Almeida, R. ;
Krausshar, R. S. .
ARCHIV DER MATHEMATIK, 2007, 88 (02) :153-163
[4]   On Cauchy estimates and growth orders of entire solutions of iterated Dirac and generalized Cauchy-Riemann equations [J].
Constales, D. ;
De Almelda, R. ;
Krausshar, R. S. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2006, 29 (14) :1663-1686
[5]   Further results on the asymptotic growth of entire solutions of iterated Dirac equations in Rn [J].
Constales, D ;
De Almeida, R ;
Krausshar, RS .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2006, 29 (05) :537-556
[6]   On the relation between the growth and the Taylor coefficients of entire solutions to the higher-dimensional Cauchy-Riemann system in Rn+1 [J].
Constales, D. ;
De Almeida, R. ;
Krausshar, R. S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (02) :763-775
[7]   Applications of the maximum term and the central index in the asymptotic growth analysis of entire solutions to higher dimensional polynomial Cauchy-Riemann equations [J].
Constales, Denis ;
De Almeida, Regina ;
Krausshar, Rolf Soeren .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2008, 53 (03) :195-213
[8]  
de Almeida R, 2005, Z ANAL ANWEND, V24, P791
[9]  
Gurlebeck K, 1997, QUATERNIONIC CLIFFOR
[10]   LOCAL GROWTH OF POWER-SERIES - SURVEY OF WIMAN-VALIRON METHOD [J].
HAYMAN, WK .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1974, 17 (03) :317-358