NONLINEAR STATE-SPACE PREDICTIVE CONTROL WITH ON-LINE LINEARISATION AND STATE ESTIMATION

被引:24
|
作者
Lawrynczuk, Maciej [1 ]
机构
[1] Warsaw Univ Technol, Inst Control & Computat Engn, PL-00665 Warsaw, Poland
关键词
process control; model predictive control; nonlinear state-space models; extended Kalman filter; on-line linearisation; MODEL; DESIGN;
D O I
10.1515/amcs-2015-0060
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes computationally efficient model predictive control (MPC) algorithms for nonlinear dynamic systems represented by discrete-time state-space models. Two approaches are detailed: in the first one the model is successively linearised on-line and used for prediction, while in the second one a linear approximation of the future process trajectory is directly found on-line. In both the cases, as a result of linearisation, the future control policy is calculated by means of quadratic optimisation. For state estimation, the extended Kalman filter is used. The discussed MPC algorithms, although disturbance state observers are not used, are able to compensate for deterministic constant-type external and internal disturbances. In order to illustrate implementation steps and compare the efficiency of the algorithms, a polymerisation reactor benchmark system is considered. In particular, the described MPC algorithms with on-line linearisation are compared with a truly nonlinear MPC approach with nonlinear optimisation repeated at each sampling instant.
引用
收藏
页码:833 / 847
页数:15
相关论文
共 50 条
  • [2] On-line parameter estimation in general state-space models
    Andrieu, Christophe
    Doucet, Arnaud
    Tadic, Vladislav B.
    2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 332 - 337
  • [3] STATE-SPACE PREDICTIVE CONTROL
    BALCHEN, JG
    LJUNGQUIST, D
    STRAND, S
    CHEMICAL ENGINEERING SCIENCE, 1992, 47 (04) : 787 - 807
  • [4] On simultaneous on-line state and parameter estimation in non-linear state-space models
    Tulsyan, Aditya
    Huang, Biao
    Gopaluni, R. Bhushan
    Forbes, J. Fraser
    JOURNAL OF PROCESS CONTROL, 2013, 23 (04) : 516 - 526
  • [5] State-space approach to nonlinear predictive generalised minimum variance control
    Grimble, Mike J.
    Majecki, Pawel
    INTERNATIONAL JOURNAL OF CONTROL, 2010, 83 (08) : 1529 - 1547
  • [6] State estimation for nonlinear state-space transmission models of tuberculosis
    Strydom, Duayne
    le Roux, Johan Derik
    Craig, Ian Keith
    RISK ANALYSIS, 2023, 43 (02) : 339 - 357
  • [7] Gaussian Variational State Estimation for Nonlinear State-Space Models
    Courts, Jarrad
    Wills, Adrian
    Schon, Thomas
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 5979 - 5993
  • [8] A State-Space Backpropagation Algorithm for Nonlinear Estimation
    Hasan A. Bjaili
    Muhammad Moinuddin
    Ali M. Rushdi
    Circuits, Systems, and Signal Processing, 2019, 38 : 3682 - 3696
  • [9] A State-Space Backpropagation Algorithm for Nonlinear Estimation
    Bjaili, Hasan A.
    Moinuddin, Muhammad
    Rushdi, Ali M.
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2019, 38 (08) : 3682 - 3696
  • [10] Predictive Control of Fractional State-space Model
    Hcheichi, Khaled
    Bouani, Faouzi
    2017 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND DIAGNOSIS (ICCAD), 2017, : 499 - 504