Small-convection limit for two-dimensional chemotaxis-Navier-Stokes system with logarithmic sensitivity and logistic-type source

被引:0
作者
Wu, Jie [1 ,2 ]
机构
[1] Chengdu Univ, Coll Comp, Chengdu 610106, Peoples R China
[2] Chengdu Univ, Key Lab Pattern Recognit & Intelligent Informat P, Chengdu 610106, Peoples R China
关键词
Chemotaxis-Navier-Stokes; Logarithmic sensitivity; Logistic-type source; Small-convection limit; Convergence; GLOBAL CLASSICAL-SOLUTIONS; TENSOR-VALUED SENSITIVITY; NONLINEAR DIFFUSION; WEAK SOLUTIONS; SINGULAR SENSITIVITY; CONVERGENCE-RATES; EXISTENCE; BOUNDEDNESS; MODEL; STABILIZATION;
D O I
10.1186/s13661-022-01622-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the small-convection limit of chemotaxis-Navier-Stokes system with logarithmic sensitivity and logistic-type source {n(t)(kappa) + u(kappa).del n(kappa) = Delta n(kappa)-chi del.(n(kappa)del log c(kappa)) + f(n(kappa)), x is an element of Omega, t > 0, c(t)(kappa)+u(kappa).del c(kappa) = Delta c(kappa)-c(kappa) + n(kappa), x is an element of Omega, t > 0, u(t)(kappa)+kappa(u(kappa).del)u(kappa) = Delta u(kappa) + del P-kappa+n(kappa)del phi, x is an element of Omega, t > 0, del.u(kappa) = 0, x is an element of Omega, t > 0, in a bounded convex domain Omega subset of R-2 with smooth boundary, where kappa is an element of R, f(s) = mu(1)s - mu(2)s(lambda), lambda > 1, and : phi: Omega -> R is a given smooth potential with second-order partial derivatives. When the chemotaxis sensitivity chi satisfies the appropriate conditions, it is proved that the unique global classical solutions (n(kappa), c(kappa), u(kappa)) will stabilize to (n(0), c(0), u(0)) as kappa -> 0.
引用
收藏
页数:17
相关论文
共 55 条
[21]  
LIONS PL, 1980, ARCH RATION MECH AN, V74, P335
[22]   Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system involving a tensor-valued sensitivity with saturation [J].
Liu, Ji ;
Wang, Yifu .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (10) :5271-5305
[23]   Global existence and convergence rates to achemotaxis-fluids system with mixed boundary conditions [J].
Peng, Yingping ;
Xiang, Zhaoyin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (02) :1277-1321
[24]   Global solutions to the coupled chemotaxis-fluids system in a 3D unbounded domain with boundary [J].
Peng, Yingping ;
Xiang, Zhaoyin .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (05) :869-920
[25]   Global existence and boundedness in a 3D Keller-Segel-Stokes system with nonlinear diffusion and rotational flux [J].
Peng, Yingping ;
Xiang, Zhaoyin .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (03)
[26]  
Sohr H., 2001, NAVIER STOKES EQUATI
[27]  
Solonnikov V. A., 2007, AM MATH SOC TRANSL 2, V2, P165, DOI DOI 10.1090/TRANS2/220/08
[28]   Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system [J].
Tao, Youshan ;
Winkler, Michael .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (06)
[29]   GLOBAL EXISTENCE AND BOUNDEDNESS IN A KELLER-SEGEL-STOKES MODEL WITH ARBITRARY POROUS MEDIUM DIFFUSION [J].
Tao, Youshan ;
Winkler, Michael .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (05) :1901-1914
[30]   Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant [J].
Tao, Youshan ;
Winkler, Michael .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (03) :2520-2543