Small-convection limit for two-dimensional chemotaxis-Navier-Stokes system with logarithmic sensitivity and logistic-type source

被引:0
作者
Wu, Jie [1 ,2 ]
机构
[1] Chengdu Univ, Coll Comp, Chengdu 610106, Peoples R China
[2] Chengdu Univ, Key Lab Pattern Recognit & Intelligent Informat P, Chengdu 610106, Peoples R China
关键词
Chemotaxis-Navier-Stokes; Logarithmic sensitivity; Logistic-type source; Small-convection limit; Convergence; GLOBAL CLASSICAL-SOLUTIONS; TENSOR-VALUED SENSITIVITY; NONLINEAR DIFFUSION; WEAK SOLUTIONS; SINGULAR SENSITIVITY; CONVERGENCE-RATES; EXISTENCE; BOUNDEDNESS; MODEL; STABILIZATION;
D O I
10.1186/s13661-022-01622-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the small-convection limit of chemotaxis-Navier-Stokes system with logarithmic sensitivity and logistic-type source {n(t)(kappa) + u(kappa).del n(kappa) = Delta n(kappa)-chi del.(n(kappa)del log c(kappa)) + f(n(kappa)), x is an element of Omega, t > 0, c(t)(kappa)+u(kappa).del c(kappa) = Delta c(kappa)-c(kappa) + n(kappa), x is an element of Omega, t > 0, u(t)(kappa)+kappa(u(kappa).del)u(kappa) = Delta u(kappa) + del P-kappa+n(kappa)del phi, x is an element of Omega, t > 0, del.u(kappa) = 0, x is an element of Omega, t > 0, in a bounded convex domain Omega subset of R-2 with smooth boundary, where kappa is an element of R, f(s) = mu(1)s - mu(2)s(lambda), lambda > 1, and : phi: Omega -> R is a given smooth potential with second-order partial derivatives. When the chemotaxis sensitivity chi satisfies the appropriate conditions, it is proved that the unique global classical solutions (n(kappa), c(kappa), u(kappa)) will stabilize to (n(0), c(0), u(0)) as kappa -> 0.
引用
收藏
页数:17
相关论文
共 55 条
[1]  
[Anonymous], 1981, GEOMETRIC THEORY SEM, DOI DOI 10.1007/BFB0089647
[2]   Singular sensitivity in a Keller-Segel-fluid system [J].
Black, Tobias ;
Lankeit, Johannes ;
Mizukami, Masaaki .
JOURNAL OF EVOLUTION EQUATIONS, 2018, 18 (02) :561-581
[4]   Global (weak) solution of the chemotaxis-Navier-Stokes equations with non-homogeneous boundary conditions and logistic growth [J].
Braukhoff, Marcel .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (04) :1013-1039
[5]   Global classical solutions in chemotaxis(-Navier)-Stokes system with rotational flux term [J].
Cao, Xinru .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (12) :6883-6914
[6]   Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities [J].
Cao, Xinru ;
Lankeit, Johannes .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (04)
[7]   CHEMOTAXIS-FLUID COUPLED MODEL FOR SWIMMING BACTERIA WITH NONLINEAR DIFFUSION: GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR [J].
Di Francesco, Marco ;
Lorz, Alexander ;
Markowich, Peter A. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (04) :1437-1453
[8]   Global existence and large time behavior for a two-dimensional chemotaxis-Navier-Stokes system [J].
Duan, Renjun ;
Li, Xie ;
Xiang, Zhaoyin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (10) :6284-6316
[9]   A Note on Global Existence for the Chemotaxis-Stokes Model with Nonlinear Diffusion [J].
Duan, Renjun ;
Xiang, Zhaoyin .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (07) :1833-1852
[10]   Global Solutions to the Coupled Chemotaxis-Fluid Equations [J].
Duan, Renjun ;
Lorz, Alexander ;
Markowich, Peter .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (09) :1635-1673