An axisymmetric multiphase moving particle semi-implicit method for simulation of 3D axisymmetric flow

被引:5
|
作者
Gao, Jinchen [1 ]
Li, Gen [2 ]
Wang, Jinshi [1 ]
Duan, Guangtao [3 ]
Yan, Junjie [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
[2] South China Univ Technol, Sch Elect Power Engn, Guangzhou 510641, Peoples R China
[3] Univ Tokyo, Dept Nucl Engn & Management, 7-3-1 Hongo,Bunkyo ku, Tokyo 1138656, Japan
基金
中国国家自然科学基金;
关键词
Moving particle semi-implicit; Multiphase; Axisymmetric; Virtual rotating particles; NUMERICAL-ANALYSIS; BEHAVIOR; DROP; FRAGMENTATION; BREAKUP; MCCI;
D O I
10.1016/j.pnucene.2022.104259
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Axisymmetric flows are widespread problems in the engineering field, but doing complete 3D simulations for them is very time-consuming. This study aims to develop an axisymmetric multiphase MPS method based on the Cartesian coordinate to transform the 3D problems onto 2D planes without losing important flow characteristics. To meet the calculation requirements of the MPS discretization, the virtual rotating particles were imaged within the effective radius of the real particles on the 2D plane, and particle number densities of the real particles were calculated by considering the contributions of the virtual rotating particles. The pressure Poisson equation, gradient, divergence, and Laplace operators were modified correspondingly to consider the interactions of the real particles with the virtual rotating particles. The method was validated by simulating 3D axisymmetric problems, namely, the capillary jet breakup, rising gas bubble, and droplet formation. The accuracy and stability of the developed method were demonstrated by comparing the numerical results with the reference data.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Simulation of red blood cell motion in microvessels using modified moving particle semi-implicit method
    Ahmadian, M.T.
    Firoozbakhsh, K.
    Hasanian, M.
    Scientia Iranica, 2011, 19 (01) : 113 - 118
  • [22] Numerical investigation on bubble dynamics during flow boiling using moving particle semi-implicit method
    Chen, Ronghua
    Tian, Wenxi
    Su, G. H.
    Qiu, Suizheng
    Ishiwatari, Yuki
    Oka, Yoshiaki
    NUCLEAR ENGINEERING AND DESIGN, 2010, 240 (11) : 3830 - 3840
  • [23] Direct numerical simulation of atomization by jet impact using moving particle semi-implicit method with GPU acceleration
    Zhang, Shuai
    Gou, Wenjin
    Wang, Yuqi
    Zhang, Jifa
    Zheng, Yao
    COMPUTATIONAL PARTICLE MECHANICS, 2022, 9 (03) : 499 - 512
  • [24] Axisymmetric free-surface flow simulation using the moving surface mesh particle method and application to drop formation
    Matsunaga, Takuya
    Sodersten, Axel
    Koshizuka, Seiichi
    Hosaka, Tomoyuki
    Ishii, Eiji
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 463
  • [25] Study of the free surface flow of water-kaolinite mixture by moving particle semi-implicit (MPS) method
    Xie, J.
    Tai, Y. C.
    Jin, Y. C.
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2014, 38 (08) : 811 - 827
  • [26] Modified Moving Particle Semi-implicit methods for the prediction of 2D wave impact pressure
    Khayyer, A.
    Gotoh, H.
    COASTAL ENGINEERING, 2009, 56 (04) : 419 - 440
  • [27] A moving particle semi-implicit method for free surface flow: Improvement in inter-particle force stabilization and consistency restoring
    Xiang, Hao
    Chen, Bin
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2017, 84 (07) : 409 - 442
  • [28] Study on molten fuel fragmentation behaviors using moving particle semi-implicit method
    Zhang, Rui
    Tian, Wenxi
    Chen, Ronghua
    Su, Guanghui
    Qiu, Suizheng
    Hedongli Gongcheng/Nuclear Power Engineering, 2015, 36 (05): : 173 - 177
  • [29] A Comparison Between Weakly-Compressible Smoothed Particle Hydrodynamics (WCSPH) and Moving Particle Semi-Implicit (MPS) Methods for 3D Dam-Break Flows
    Amaro Junior, Rubens A.
    Cheng, Liang-Yee
    Buruchenko, Sergei K.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2021, 18 (02)
  • [30] Difference between smoothed particle hydrodynamics and moving particle semi-implicit operators
    Imoto, Yusuke
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 395