An axisymmetric multiphase moving particle semi-implicit method for simulation of 3D axisymmetric flow

被引:5
|
作者
Gao, Jinchen [1 ]
Li, Gen [2 ]
Wang, Jinshi [1 ]
Duan, Guangtao [3 ]
Yan, Junjie [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
[2] South China Univ Technol, Sch Elect Power Engn, Guangzhou 510641, Peoples R China
[3] Univ Tokyo, Dept Nucl Engn & Management, 7-3-1 Hongo,Bunkyo ku, Tokyo 1138656, Japan
基金
中国国家自然科学基金;
关键词
Moving particle semi-implicit; Multiphase; Axisymmetric; Virtual rotating particles; NUMERICAL-ANALYSIS; BEHAVIOR; DROP; FRAGMENTATION; BREAKUP; MCCI;
D O I
10.1016/j.pnucene.2022.104259
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Axisymmetric flows are widespread problems in the engineering field, but doing complete 3D simulations for them is very time-consuming. This study aims to develop an axisymmetric multiphase MPS method based on the Cartesian coordinate to transform the 3D problems onto 2D planes without losing important flow characteristics. To meet the calculation requirements of the MPS discretization, the virtual rotating particles were imaged within the effective radius of the real particles on the 2D plane, and particle number densities of the real particles were calculated by considering the contributions of the virtual rotating particles. The pressure Poisson equation, gradient, divergence, and Laplace operators were modified correspondingly to consider the interactions of the real particles with the virtual rotating particles. The method was validated by simulating 3D axisymmetric problems, namely, the capillary jet breakup, rising gas bubble, and droplet formation. The accuracy and stability of the developed method were demonstrated by comparing the numerical results with the reference data.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Stable multiphase moving particle semi-implicit method for incompressible interfacial flow
    Duan, Guangtao
    Chen, Bin
    Koshizuka, Seiichi
    Xiang, Hao
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 318 : 636 - 666
  • [2] Improved Moving Particle Semi-implicit method for multiphase flow with discontinuity
    Wang, Jianqiang
    Zhang, Xiaobing
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 346 : 312 - 331
  • [3] 3D simulation of eutectic interaction of Pb-Sn system using Moving Particle Semi-implicit (MPS) method
    Mustari, Asril Pramutadi Andi
    Oka, Yoshiaki
    Furuya, Masahiro
    Takeo, Watanabe
    Chen, Ronghua
    ANNALS OF NUCLEAR ENERGY, 2015, 81 : 26 - 33
  • [4] Simulation of melt spreading over dry substrates with the moving particle Semi-implicit method
    Zhao, Lu
    Punetha, Maneesh
    Ma, Weimin
    Konovalenko, Alexander
    Bechta, Sevostian
    NUCLEAR ENGINEERING AND DESIGN, 2023, 405
  • [5] A Simulation of Soil Dumping Using Moving Particle Semi-Implicit Method
    Kim, Kyung Sung
    Lee, Jong Hyun
    JOURNAL OF COASTAL RESEARCH, 2021, : 549 - 553
  • [6] Numerical simulation of microscopic flow in a fiber bundle using the moving particle semi-implicit method
    Okabe, Tomonaga
    Matsutani, Hiroaki
    Honda, Takashi
    Yashiro, Shigeki
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2012, 43 (10) : 1765 - 1774
  • [7] An improved Multiphase Moving Particle Semi-implicit method in bubble rising simulations with large density ratios
    Guo, Kailun
    Chen, Ronghua
    Qiu, Suizheng
    Tian, Wenxi
    Su, Guanghui
    NUCLEAR ENGINEERING AND DESIGN, 2018, 340 : 370 - 387
  • [8] Improvement of stability in moving particle semi-implicit method
    Kondo, Masahiro
    Koshizuka, Seiichi
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 65 (06) : 638 - 654
  • [9] Improvement of moving particle semi-implicit method for simulation of progressive water waves
    Wang, Lizhu
    Jiang, Qin
    Zhang, Changkuan
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2017, 85 (02) : 69 - 89
  • [10] Comparison of parallel solvers for Moving Particle Semi-Implicit method
    Duan, Guangtao
    Chen, Bin
    ENGINEERING COMPUTATIONS, 2015, 32 (03) : 834 - 862