Promoting effects of Ce0.75Zr0.25O2 on the La0.7Sr0.3MnO3 electrocatalyst for the oxygen reduction reaction in metal-air batteries

被引:38
作者
Xue, Yejian [1 ]
Miao, He [1 ]
Li, Baihai [2 ]
Sun, Shanshan [1 ]
Wang, Qin [1 ]
Li, Shihua [1 ]
Chen, Liang [3 ]
Liu, Zhaoping [1 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Key Lab Graphene Technol & Applicat Zhejiang Prov, Adv Liion Battery Engn Lab, Ningbo 315201, Zhejiang, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Energy Sci & Engn, Chengdu 611731, Peoples R China
[3] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China
关键词
PEROVSKITE OXIDES; EVOLUTION; VACANCIES; CARBON; CATALYSTS; PERFORMANCE; COMPOSITES; SURFACE; CELLS; XPS;
D O I
10.1039/c6ta09795b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Perovskites have been proposed as one of the best oxygen reduction reaction catalysts (ORRCs) to substitute noble metals though their catalytic activity still need to be improved. It is well accepted that improving the oxygen adsorption capacity is beneficial to the catalytic activity of La1-xSrxMnO3 (LSM) perovskites. Herein, we synthesized the LSM-based composite by compositing La0.7Sr0.3MnO3 with Ce0.75Zr0.25O2 (CZ) which is used as an excellent oxygen storage material by a two-step solution method. The LSM-CZ composite is revealed as a novel electrocatalyst for the oxygen reduction reaction with the direct four-electron transfer mechanism and a positive onset potential in comparison with the commercial Pt/C catalyst. And its onset potential is almost the most positive one among those of the perovskites stemmed from LaMnO3. In addition, the stability of LSMCZ is even superior to that of Pt/C, and LSM-CZ almost accumulates no intermediate product of HO2- (similar to 0.8%) after aging for 100 000 seconds. By using LSM-CZ as the ORRC, the maximum power density of the aluminum-air battery can reach 233.4 mW cm(-2). Our work paves the way for the development of perovskite catalysts for energy conversion and storage.
引用
收藏
页码:6411 / 6415
页数:5
相关论文
共 53 条
[1]  
[Anonymous], INT ORTHOP
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Ultrathin Spinel-Structured Nanosheets Rich in Oxygen Deficiencies for Enhanced Electrocatalytic Water Oxidation [J].
Bao, Jian ;
Zhang, Xiaodong ;
Fan, Bo ;
Zhang, Jiajia ;
Zhou, Min ;
Yang, Wenlong ;
Hu, Xin ;
Wang, Hui ;
Pan, Bicai ;
Xie, Yi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (25) :7399-7404
[4]   Chemistry - Oxygen vacancies and catalysis on ceria surfaces [J].
Campbell, CT ;
Peden, CHF .
SCIENCE, 2005, 309 (5735) :713-714
[5]   Oxygen-deficient BaTiO3-x perovskite as an efficient bifunctional oxygen electrocatalyst [J].
Chen, Ching-Fong ;
King, Graham ;
Dickerson, Robert M. ;
Papin, Pallas A. ;
Gupta, Shiva ;
Kellogg, William R. ;
Wu, Gang .
NANO ENERGY, 2015, 13 :423-432
[6]   Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices [J].
Chen, Dengjie ;
Chen, Chi ;
Baiyee, Zarah Medina ;
Shao, Zongping ;
Ciucci, Francesco .
CHEMICAL REVIEWS, 2015, 115 (18) :9869-9921
[7]   Synergistically enhanced oxygen reduction activity of MnOx-CeO2/Ketjenblack composites [J].
Chen, Jiajie ;
Zhou, Nan ;
Wang, Haiyan ;
Peng, Zhiguang ;
Li, Huiyong ;
Tang, Yougen ;
Liu, Kun .
CHEMICAL COMMUNICATIONS, 2015, 51 (50) :10123-10126
[8]   Enhancing Electrocatalytic Oxygen Reduction on MnO2 with Vacancies [J].
Cheng, Fangyi ;
Zhang, Tianran ;
Zhang, Yi ;
Du, Jing ;
Han, Xiaopeng ;
Chen, Jun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (09) :2474-2477
[9]   Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts [J].
Cheng, Fangyi ;
Chen, Jun .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (06) :2172-2192
[10]   Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts [J].
Cheng, Fangyi ;
Shen, Jian ;
Peng, Bo ;
Pan, Yuede ;
Tao, Zhanliang ;
Chen, Jun .
NATURE CHEMISTRY, 2011, 3 (01) :79-84