An Analysis of Project Risks Using the Non-parametric Bootstrap Technique

被引:8
作者
Alborzi, S. [1 ]
Aminian, A. [2 ]
Mojtahedi, S. M. H. [3 ]
Mousavi, S. M. [3 ]
机构
[1] Islamic Azad Univ Qazvin, Dept Mech & Ind Engn, Qazvin, Iran
[2] Islamic Azad Univ, Dept Ind Engn, Gachsaran Branch, Damavand, Iran
[3] Islamic Azad Univ, Grad Sch, Dept Ind Engn, S Tehran Branch Member Young Res Club, Tehran, Iran
来源
IEEM: 2008 INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT, VOLS 1-3 | 2008年
关键词
Bootstrap; non-parametric standard deviation; project risk analysis; risk factor;
D O I
10.1109/IEEM.2008.4738079
中图分类号
F [经济];
学科分类号
02 ;
摘要
Standard statistical techniques do not always provide answers to project risks questions because often there are no parametric distributions on which significance can be estimated. Resampling methods provide a battery of tests that can be used in such circumstances. In the past few years these methods have been explored theoretically and are now employed frequently. The aim of the paper is to highlight the motivations for using a model base on bootstrap in typical project risk analysis. Bootstrap method for decreasing the standard deviation of project risks is described. We give a numerical example for better understanding.
引用
收藏
页码:1295 / +
页数:2
相关论文
共 50 条
[41]   Measuring efficiency and productivity changes: A non-parametric analysis of Ghanaian life insurance industry [J].
Ashiagbor, Albert Ayi ;
Dziwornu, Raymond ;
Gbade, Aku Vivian ;
Offei-Kwafo, Kwasi ;
Liticia, Gagakuma .
COGENT ECONOMICS & FINANCE, 2023, 11 (01)
[42]   Coverage and Precision of Confidence Intervals for Area Under the Curve Using Parametric and Non-parametric Methods in a Toxicokinetic Experimental Design [J].
Peter L. Bonate .
Pharmaceutical Research, 1998, 15 :405-410
[43]   Coverage and precision of confidence intervals for area under the curve using parametric and non-parametric methods in a toxicokinetic experimental design [J].
Bonate, PL .
PHARMACEUTICAL RESEARCH, 1998, 15 (03) :405-410
[44]   Software to estimate-33 and-1500 kPa soil water retention using the non-parametric k-Nearest Neighbor technique [J].
Nemes, A. ;
Roberts, R. T. ;
Rawls, W. J. ;
Pachepsky, Ya. A. ;
van Genuchten, M. Th. .
ENVIRONMENTAL MODELLING & SOFTWARE, 2008, 23 (02) :254-255
[45]   PARAMETRIC AND NON-PARAMETRIC STATISTICAL TECHNIQUES TO INVESTIGATE FISHERIES DATA IN LAKE NASSER EGYPT [J].
Abdelaal, Medhat Mohamed Ahmed ;
Abdelazim, Muhamed Wael Farouq ;
Morsy, Hisham Abdel-Tawab Mahran ;
Ebada, Mona Mahmoud Mohamed ;
Ahmed, Mona Mohamed Eltaher ;
Saad, Hisham Mohamed Abdelaziz ;
Wahba, Rashad Raouf Thabet .
ADVANCES AND APPLICATIONS IN STATISTICS, 2013, 36 (01) :47-73
[46]   Indebtedness, Fiscal Discipline and Development Spending - A Non-parametric Approach [J].
Sinha, Ram Pratap .
CENTRAL EUROPEAN JOURNAL OF ECONOMIC MODELLING AND ECONOMETRICS, 2021, 13 (02) :147-173
[47]   Statistical Approaches for Non-parametric Frontier Models: A Guided Tour [J].
Simar, Leopold ;
Wilson, Paul W. .
INTERNATIONAL STATISTICAL REVIEW, 2015, 83 (01) :77-110
[48]   New non-parametric inferences for low-income proportions [J].
Luo, Shan ;
Qin, Gengsheng .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2017, 69 (03) :599-626
[49]   Confidence bands in non-parametric errorsin-variables regression [J].
Delaigle, Aurore ;
Hall, Peter ;
Jamshidi, Farshid .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2015, 77 (01) :149-169
[50]   New non-parametric inferences for low-income proportions [J].
Shan Luo ;
Gengsheng Qin .
Annals of the Institute of Statistical Mathematics, 2017, 69 :599-626