Asymptotical Stability of Riemann-Liouville Fractional-Order Neutral-Type Delayed Projective Neural Networks

被引:18
|
作者
Li, Jin-dong [1 ,2 ]
Wu, Zeng-bao [3 ]
Huang, Nan-jing [2 ]
机构
[1] Chengdu Univ Technol, Coll Management Sci, Chengdu 610059, Sichuan, Peoples R China
[2] Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China
[3] Luoyang Normal Univ, Dept Math, Luoyang 471934, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional-order projective neural network; LMI technique; Neutral-type delayed projective neural network; Equilibrium point; Asymptotical stability; PERIODIC-SOLUTION; SINGULAR SYSTEMS; EXISTENCE;
D O I
10.1007/s11063-019-10050-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a new class of Riemann-Liouville fractional-order neutral-type delayed projective neural networks are introduced and studied. By utilizing the linear matrix inequality technique, some sufficient conditions to ensure the asymptotical stability of the equilibrium point of the addressed projective neural networks are presented. Finally, some numerical examples are given to illustrate the validity and feasibility of the main results.
引用
收藏
页码:565 / 579
页数:15
相关论文
共 50 条
  • [21] Consensus of fractional-order delayed multi-agent systems in Riemann-Liouville sense
    Yang, Ran
    Liu, Song
    Li, Xiaoyan
    Zhao, Xiao-Wen
    Pan, Genan
    NEUROCOMPUTING, 2020, 396 : 123 - 129
  • [22] A novel fractional-order neutral-type two-delayed neural network: Stability, bifurcation, and numerical solution
    Kumar, Pushpendra
    Lee, Tae H.
    Erturk, Vedat Suat
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2025, 232 : 245 - 260
  • [23] Synchronization for commensurate Riemann-Liouville fractional-order memristor-based neural networks with unknown parameters
    Gu, Yajuan
    Wang, Hu
    Yu, Yongguang
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2020, 357 (13): : 8870 - 8898
  • [24] Initialized fractional differential equations with Riemann-Liouville fractional-order derivative
    M.L. Du
    Z.H. Wang
    The European Physical Journal Special Topics, 2011, 193 : 49 - 60
  • [25] Initialized fractional differential equations with Riemann-Liouville fractional-order derivative
    Du, M. L.
    Wang, Z. H.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2011, 193 (01): : 49 - 60
  • [26] Multiple Lagrange stability and Lyapunov asymptotical stability of delayed fractional-order Cohen–Grossberg neural networks
    黄玉娇
    袁孝焰
    杨旭华
    龙海霞
    肖杰
    Chinese Physics B, 2020, (02) : 229 - 238
  • [27] Mittag–Leffler stability and synchronization of neutral-type fractional-order neural networks with leakage delay and mixed delays
    Popa C.-A.
    Journal of the Franklin Institute, 2023, 360 (01) : 327 - 355
  • [28] Stability analysis of Riemann-Liouville fractional-order neural networks with reaction-diffusion terms and mixed time-varying delays
    Wu, Xiang
    Liu, Shutang
    Wang, Yin
    NEUROCOMPUTING, 2021, 431 : 169 - 178
  • [29] Multiple Lagrange stability and Lyapunov asymptotical stability of delayed fractional-order Cohen-Grossberg neural networks
    Huang, Yu-Jiao
    Yuan, Xiao-Yan
    Yang, Xu-Hua
    Long, Hai-Xia
    Xiao, Jie
    CHINESE PHYSICS B, 2020, 29 (02)
  • [30] Synchronization for Incommensurate Riemann-Liouville Fractional-Order Time-Delayed Competitive Neural Networks With Different Time Scales and Known or Unknown Parameters
    Gu, Yajuan
    Wang, Hu
    Yu, Yongguang
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2019, 14 (05):