Independence in finitary abstract elementary classes

被引:32
作者
Hyttinen, T. [1 ]
Kesala, M. [1 ]
机构
[1] Univ Helsinki, Dept Math & Stat, FI-00014 Helsinki, Finland
基金
芬兰科学院;
关键词
AEC; independence; locality;
D O I
10.1016/j.apal.2006.01.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a specific subclass of abstract elementary classes. We construct a notion of independence for these AEC's and show that under simplicity the notion has all the usual properties of first order non-forking over complete types. Our approach generalizes the context of N-0-stable homogeneous classes and excellent classes. Our set of assumptions follow from disjoint amalgamation, existence of a prime model over circle divide, Lowenheim-Skolem number being to omega, LS(K)-tameness and a property we call finite character. We also start the studies of these classes from the aleph(0)-stable case. Stability in N-0 and LS(K)-tameness can be replaced by categoricity above the Hanf number. Finite character is the main novelty of this paper. Almost all examples of AEC's have this property and it allows us to use weak types, as we call them, in place of Galois types. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:103 / 138
页数:36
相关论文
共 21 条
[1]  
Baldwin JT, 2005, CONTEMP MATH, V380, P1
[2]  
BALDWIN JT, CATEGORICITY ONLINE
[3]  
GROSSBERG R, IN PRESS J SYMBOLIC
[4]  
Grossberg R., 2002, Logic and Algebra, P165
[5]  
Hyttinen T, 2005, CONTEMP MATH, V380, P137
[6]   Strong splitting in stable homogeneous models [J].
Hyttinen, T ;
Shelah, S .
ANNALS OF PURE AND APPLIED LOGIC, 2000, 103 (1-3) :201-228
[7]  
HYTTINEN T, 2004, NOTRE DAME J FORM L, V45, P99
[8]  
HYTTINEN T, 395 U HELS
[9]  
HYTTINEN T, 2005, J MATH LOGIC, V5, P639
[10]  
HYTTINEN T, IN PRESS ANN PURE AP