The thermodynamic processes in the absorption refrigeration system releases a large amount of heat to the environment. This heat is evolved at temperatures considerably above the ambient temperature, which results in a major irreversible loss in the system components. In this paper an exergy analysis is carried out on a single-effect absorption refrigeration cycle with lithium-bromide-water as the working fluid pair. Numerical results for the cycle are tabulated. A design procedure has been applied to a lithium-bromide absorption cycle and an optimisation procedure that consists of determining the enthalpy, entropy, temperature, mass flow rate, heat rate in each component, and coefficient of performance has been performed. (C) 2000 Published by Elsevier Science Ltd. All rights reserved.