Mode I fracture characterization of a hybrid cork and carbon-epoxy laminate

被引:14
作者
Fernandes, R. [1 ]
de Moura, M. F. S. F. [1 ]
Silva, F. G. A. [2 ]
Dourado, N. [3 ]
机构
[1] Univ Porto, FEUP, DEMec, P-4200465 Oporto, Portugal
[2] INEGI Inst Engn Mecan & Gestao Ind, P-4200465 Oporto, Portugal
[3] Univ Tras os Montes & Alto Douro, CITAB, P-5000801 Quinta De Prados, Vila Real, Portugal
关键词
Hybrid laminate; Carbon-epoxy; Cork; Mode I toughness; Cohesive zone modelling; LOW-VELOCITY IMPACT; COMPOSITES; DELAMINATION; RESISTANCE; DAMAGE; PERFORMANCE; PREDICTION; BEHAVIOR;
D O I
10.1016/j.compstruct.2014.02.019
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this work fracture characterization under model loading of a hybrid laminate composed by a unidirectional carbon-epoxy composite and cork was performed using the Double Cantilever Beam test. An equivalent crack length procedure based on specimen compliance and Timoshenko beam theory applied to the composed beam was adopted to evaluate the fracture energy. The procedure revealed to be quite effective and it was validated numerically by means of finite element analysis including cohesive zone modelling. The analysis of the experimental results has shown that an increase of 32% of mode I toughness relative to monolithic carbon-epoxy laminate was obtained, which proves that hybridization using cork results in a quite effective procedure to increase interlaminar toughness of composite laminates. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:248 / 253
页数:6
相关论文
共 50 条
  • [31] CNT-PAN hybrid nanofibrous mat interleaved carbon/epoxy laminates with improved Mode I interlaminar fracture toughness
    Eskizeybek, Volkan
    Yar, Adem
    Avci, Ahmet
    COMPOSITES SCIENCE AND TECHNOLOGY, 2018, 157 : 30 - 39
  • [32] Mixed-mode I plus III interlaminar fracture of carbon/epoxy laminates
    Pereira, A. B.
    de Morais, A. B.
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2009, 40 (04) : 518 - 523
  • [33] Improvements in the thermomechanical and electrical behavior of hybrid carbon-epoxy nanocomposites
    Lopez-Barroso, J.
    Martinez-Hernandez, A. L.
    Rivera-Armenta, J. L.
    Almendarez-Camarillo, A.
    Garcia-Casillas, P. E.
    Flores-Hernandez, C. G.
    Velasco-Santos, C.
    CARBON TRENDS, 2021, 5
  • [34] Loading rate dependency on mode I interlaminar fracture toughness of unidirectional and woven carbon fibre epoxy composites
    Zabala, H.
    Aretxabaleta, L.
    Castillo, G.
    Aurrekoetxea, J.
    COMPOSITE STRUCTURES, 2015, 121 : 75 - 82
  • [35] Characterization of mixed mode fracture properties of nanographene reinforced epoxy and Mode I delamination of its carbon fiber composite
    Kumar, Abhishek
    Roy, Samit
    COMPOSITES PART B-ENGINEERING, 2018, 134 : 98 - 105
  • [36] Mode II fatigue delamination growth characterization of a carbon/epoxy laminate at high frequency under vibration loading
    Maillet, Irene
    Michel, Laurent
    Souric, Frederic
    Gourinat, Yves
    ENGINEERING FRACTURE MECHANICS, 2015, 149 : 298 - 312
  • [37] Determination of the fracture energy under mode I loading of a honeycomb/carbon-epoxy sandwich panel using the asymmetric double cantilever beam test
    de Moura, Marcelo F. S. F.
    Moreira, Raul D. F.
    Rocha, Ricardo J. B.
    Oliveira, Cristiana F. M.
    JOURNAL OF SANDWICH STRUCTURES & MATERIALS, 2022, 24 (06) : 1977 - 1992
  • [38] Study of the influence of the type of matrix used in carbon-epoxy composites on fatigue delamination under mode III fracture
    Bertorello, C.
    Vina, J.
    Vina, I.
    Arguelles, A.
    MATERIALS & DESIGN, 2020, 186
  • [39] Effects of Stitching on Delamination of Satin Weave Carbon-Epoxy Laminates Under Mode I, Mode II and Mixed-Mode I/II Loadings
    Walid Trabelsi
    Laurent Michel
    Renaud Othomene
    Applied Composite Materials, 2010, 17 : 575 - 595
  • [40] Influence of loading rate on the delamination response of untufted and tufted carbon epoxy non crimp fabric composites: Mode I
    de Verdiere, M. Colin
    Skordos, A. A.
    May, M.
    Walton, A. C.
    ENGINEERING FRACTURE MECHANICS, 2012, 96 : 11 - 25