M-type penalized splines with auxiliary scale estimation

被引:4
作者
Kalogridis, Ioannis [1 ]
Van Aelst, Stefan [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200B, B-3001 Leuven, Belgium
关键词
Penalized splines; M-estimation; Auxiliary scale; Asymptotics; ASYMPTOTICS; REGRESSION; CONVERGENCE; RATES;
D O I
10.1016/j.jspi.2020.09.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Penalized spline regression is a popular and flexible method of obtaining estimates in nonparametric models but the classical least-squares criterion is highly susceptible to model deviations and atypical observations. Penalized spline estimation with a resistant loss function is a natural remedy, yet to this day the asymptotic properties of M-type penalized spline estimators have not been studied. We show in this paper that M-type penalized spline estimators achieve the same rates of convergence as their least-squares counterparts, even with auxiliary scale estimation. We illustrate the benefits of M-type penalized splines in a Monte-Carlo study and two real-data examples, which contain atypical observations. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:97 / 113
页数:17
相关论文
共 47 条
[1]  
Adams R., 2003, SOBOLEV SPACES
[2]   ASYMPTOTIC INTEGRATED MEAN-SQUARE ERROR USING LEAST-SQUARES AND BIAS MINIMIZING SPLINES [J].
AGARWAL, GG ;
STUDDEN, WJ .
ANNALS OF STATISTICS, 1980, 8 (06) :1307-1325
[3]  
[Anonymous], 2001, Applied Mathematical Sciences
[4]  
[Anonymous], 1993, NONPARAMETRIC REGRES
[5]  
[Anonymous], 2009, Wiley Series in Probability and Statistics, DOI DOI 10.1002/9780470434697.CH7
[6]   Robust plug-in bandwidth estimators in nonparametric regression [J].
Boente, G ;
Fraiman, R ;
Meloche, J .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 57 (01) :109-142
[7]   Robust inference for generalized linear models [J].
Cantoni, E ;
Ronchetti, E .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (455) :1022-1030
[8]   Asymptotic properties of penalized spline estimators [J].
Claeskens, Gerda ;
Krivobokova, Tatyana ;
Opsomer, Jean D. .
BIOMETRIKA, 2009, 96 (03) :529-544
[9]   ASYMPTOTICS FOR M-TYPE SMOOTHING SPLINES [J].
COX, DD .
ANNALS OF STATISTICS, 1983, 11 (02) :530-551
[10]   M-TYPE SMOOTHING SPLINES WITH AUXILIARY SCALE ESTIMATION [J].
CUNNINGHAM, JK ;
EUBANK, RL ;
HSING, T .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1991, 11 (01) :43-51