Generalized manifold-ranking-based image retrieval

被引:95
作者
He, Jingrui [1 ]
Li, Mingjing
Zhang, Hong-Jiang
Tong, Hanghang
Zhang, Changshui
机构
[1] Tsinghua Univ, Automat Dept, Beijing 100084, Peoples R China
[2] Microsoft Res Asia, Beijing 100080, Peoples R China
关键词
image retrieval; manifold ranking; outside the database; relevance feedback;
D O I
10.1109/TIP.2006.877491
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a general transductive learning framework named generalized manifold-ranking-based image retrieval (gMRBIR) for image retrieval. Comparing with an existing transductive learning method named MRBIR [12], our method could work well whether or not the query image is in the database; thus, it is more applicable for real applications. Given a query image, gMRBIR first initializes a pseudo seed vector based on neighborhood relationship and then spread its scores via manifold ranking to all the unlabeled images in the database. Furthermore, in gMRBIR, we also make use of relevance feedback and active learning to refine the retrieval result so that it converges to the query concept as fast as possible. Systematic experiments on a general-purpose image database consisting of 5 000 Corel images demonstrate the superiority of gMRBIR over state-of-the-art techniques.
引用
收藏
页码:3170 / 3177
页数:8
相关论文
共 30 条
[1]  
[Anonymous], NIPS
[2]  
[Anonymous], P IEEE INT C MULT EX
[3]  
Faloutsos C., 1994, Journal of Intelligent Information Systems: Integrating Artificial Intelligence and Database Technologies, V3, P231, DOI 10.1007/BF00962238
[4]  
He J., 2004, P 12 ANN ACM INT C M, P9, DOI [DOI 10.1145/1027527.1027531, 10.1145/1027527.1027531]
[5]   Image indexing using color correlograms [J].
Huang, J ;
Kumar, SR ;
Mitra, M ;
Zhu, WJ ;
Zabih, R .
1997 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1997, :762-768
[6]  
ISHIKAWA Y, 1998, 24 INT C VER LARG DA
[7]  
JING F, 2002, 10 ACM INT C MULT
[8]   Comparison of similarity metrics for texture image retrieval. [J].
Kokare, M ;
Chatterji, BN ;
Biswas, PK .
IEEE TENCON 2003: CONFERENCE ON CONVERGENT TECHNOLOGIES FOR THE ASIA-PACIFIC REGION, VOLS 1-4, 2003, :571-575
[9]  
Lei Z, 2001, 2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, P721, DOI 10.1109/ICIP.2001.958595
[10]  
Li BT, 2002, 2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, P597