Infinite-dimensional polyhedrality

被引:27
作者
Fonf, VP [1 ]
Vesely, L
机构
[1] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
[2] Univ Studi, Dipartimento Matemat, I-20133 Milan, Italy
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2004年 / 56卷 / 03期
关键词
D O I
10.4153/CJM-2004-022-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with generalizations of the notion of a polytope to infinite dimensions. The most general definition is the following: a bounded closed convex subset of a Banach space is called a polytope if each of its finite-dimensional affine sections is a (standard) polytope. We study the relationships between eight known definitions of infinite-dimensional polyhedrality. We provide a complete isometric classification of them, which gives solutions to several open problems. An almost complete isomorphic classification is given as well (only one implication remains open).
引用
收藏
页码:472 / 494
页数:23
相关论文
共 21 条
[1]  
Amir D., 1972, J APPROX THEORY, V6, P176, DOI [10.1016/0021-9045(72)90073-1, DOI 10.1016/0021-9045(72)90073-1]
[2]  
Bessaga C., 1960, STUD MATH, V19, P53
[3]  
Brosowski B., 1974, Journal of Approximation Theory, V10, P245, DOI 10.1016/0021-9045(74)90122-1
[4]   SETS OF EFFICIENT POINTS IN A NORMED SPACE [J].
DURIER, R ;
MICHELOT, C .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 117 (02) :506-528
[5]   POLYHEDRAL NORMS IN AN INFINITE-DIMENSIONAL SPACE [J].
DURIER, R ;
PAPINI, PL .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1993, 23 (03) :863-875
[6]  
Durier Roland, 1992, ATT SEM FIS MAT U MO, V40, P623
[7]   A FORM OF INFINITE-DIMENSIONAL POLYTOPES [J].
FONF, VP .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1984, 18 (02) :154-155
[8]   POLYHEDRAL BANACH-SPACES [J].
FONF, VP .
MATHEMATICAL NOTES, 1981, 30 (3-4) :809-813
[9]  
Fonf VP, 2001, HANDBOOK OF THE GEOMETRY OF BANACH SPACES, VOL 1, P599, DOI 10.1016/S1874-5849(01)80017-6
[10]   Some results on infinite-dimensional convexity [J].
Fonf, VP ;
Lindenstrauss, J .
ISRAEL JOURNAL OF MATHEMATICS, 1998, 108 (1) :13-32