Reduced order model in cardiac electrophysiology with approximated Lax pairs

被引:11
作者
Gerbeau, Jean-Frederic [1 ,2 ]
Lombardi, Damiano [1 ,2 ]
Schenone, Elisa [1 ,2 ]
机构
[1] Inria Paris Rocquencourt, F-78153 Le Chesnay, France
[2] Univ Paris 06, Sorbonne Univ, Lab Jacques Louis Lions, UMR 7598, F-75005 Paris, France
关键词
Reduced order models; Approximated Lax pairs; Cardiac electrophysiology; PARTIAL-DIFFERENTIAL-EQUATIONS; DYNAMICALLY BIORTHOGONAL METHOD; EMPIRICAL INTERPOLATION; REDUCTION; EVOLUTION;
D O I
10.1007/s10444-014-9393-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A reduced-order method based on Approximated Lax Pairs (ALP) is applied to the integration of electrophysiology models. These are often high-dimensional parametric equation systems, challenging from a model reduction standpoint. The method is tested on two and three dimensional test-cases, of increasing complexity. The solutions are compared to the ones obtained by a finite element. The reduced-order simulation of pseudo-electrocardiograms based on ALP is proposed in the last part.
引用
收藏
页码:1103 / 1130
页数:28
相关论文
共 25 条
[1]   Interpolation method for adapting reduced-order models and application to aeroelasticity [J].
Amsallem, David ;
Farhat, Charbel .
AIAA JOURNAL, 2008, 46 (07) :1803-1813
[2]  
[Anonymous], 2007, ARCH COMPUT METHODS, DOI DOI 10.1007/BF03024948
[3]   An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations [J].
Barrault, M ;
Maday, Y ;
Nguyen, NC ;
Patera, AT .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (09) :667-672
[4]   Reduced-order modeling for cardiac electrophysiology. Application to parameter identification [J].
Boulakia, M. ;
Schenone, E. ;
Gerbeau, J-F. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2012, 28 (6-7) :727-744
[5]   Mathematical Modeling of Electrocardiograms: A Numerical Study [J].
Boulakia, Muriel ;
Cazeau, Serge ;
Fernandez, Miguel A. ;
Gerbeau, Jean-Frederic ;
Zemzemi, Nejib .
ANNALS OF BIOMEDICAL ENGINEERING, 2010, 38 (03) :1071-1097
[6]   Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations [J].
Carlberg, Kevin ;
Bou-Mosleh, Charbel ;
Farhat, Charbel .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 86 (02) :155-181
[7]   NONLINEAR MODEL REDUCTION VIA DISCRETE EMPIRICAL INTERPOLATION [J].
Chaturantabut, Saifon ;
Sorensen, Danny C. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (05) :2737-2764
[8]   A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations I: Derivation and algorithms [J].
Cheng, Mulin ;
Hou, Thomas Y. ;
Zhang, Zhiwen .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 242 :843-868
[9]   A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations II: Adaptivity and generalizations [J].
Cheng, Mulin ;
Hou, Thomas Y. ;
Zhang, Zhiwen .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 242 :753-776
[10]   Exploring anodal and cathodal make and break cardiac excitation mechanisms in a 3D anisotropic bidomain model [J].
Colli-Franzone, P. ;
Pavarino, L. F. ;
Scacchi, S. .
MATHEMATICAL BIOSCIENCES, 2011, 230 (02) :96-114