TiO2 as a multifunction coating layer to enhance the electrochemical performance of SiOx@TiO2@C composite as anode material

被引:125
作者
Xiao, Zhexi [1 ]
Yu, Chunhui [1 ]
Lin, Xianqing [1 ]
Chen, Xiao [1 ]
Zhang, Chenxi [1 ]
Jiang, Hairong [1 ]
Zhang, Rufan [1 ]
Wei, Fei [1 ]
机构
[1] Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China
关键词
SiOx-based anode materials; Anatase-phase TiO2 layer; Electron and ion diffusion; Side reactivity; Safety; Interface stability; LI-ION BATTERIES; STORAGE PERFORMANCES; NANOSTRUCTURED TIO2; CYCLING STABILITY; RATIONAL DESIGN; 001; FACETS; LITHIUM; SILICON; ANATASE; ELECTRODE;
D O I
10.1016/j.nanoen.2020.105082
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
SiOx-based anode materials suffer from inherent defects of volume expansion, high initial capacity loss, and the huge electron and ion resistance in the unstable solid electrolyte interphase layer impede their commercialization. Surface coating is the most prevalent strategy for resolving the key concerns. In this paper, we present a dual-shell coating structural composite (denoted as SiOx@TiO2@C) through a two-step process. By introducing a high-quality anatase-phase TiO2 layer, a highly stable interface and decreased resistance to electron and ion diffusion of composite are achieved and investigated systematically. Additionally, the side reactivity is studied firstly. Moreover, the enhanced safety of the electrode is evaluated. The as-prepared composite exhibites a high initial discharge capacity of 1624.7 mAh g(-1) with an initial coulombic efficiency (ICE) of 81.2%, capacity retention of 89.5% (vs 2nd discharge) after 800 cycles, and a reversible capacity of 949.7 mAh g(-1) at 10 A g(-1). The assembled full-cell exhibites an initial area capacity of 2.6 mAh cm(-2) with an ICE higher than 90%; the exceeding 106 times and 60 times increase in electron conductivity and Li+ conductivity facilitate electron and ion diffusion particularly at high rates. The approximately 1.5 times higher energy barrier implies the blocking effect of the TiO2 layer on the side reaction. The almost 4 times decrease in the accumulated enthalpy reveals the positive effect of the anatase-phase TiO2 layer on thermal stability. The probable reasons associated with the interface stability are discussed and proposed in this paper.
引用
收藏
页数:12
相关论文
共 66 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter [J].
Ashuri, Maziar ;
He, Qianran ;
Shaw, Leon L. .
NANOSCALE, 2016, 8 (01) :74-103
[3]   Protonated titanates and TiO2 nanostructured materials:: Synthesis, properties, and applications [J].
Bavykin, Dmitry V. ;
Friedrich, Jens M. ;
Walsh, Frank C. .
ADVANCED MATERIALS, 2006, 18 (21) :2807-2824
[4]   On the safety of the Li4Ti5O12/LiMn2O4 lithium-ion battery system [J].
Belharouak, I. ;
Sun, Y.-K. ;
Lu, W. ;
Amine, K. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (12) :A1083-A1087
[5]   Roles of Oxygen and Interfacial Stabilization in Enhancing the Cycling Ability of Silicon Oxide Anodes for Rechargeable Lithium Batteries [J].
Cao Cuong Nguyen ;
Choi, Hyun ;
Song, Seung-Wan .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (06) :A906-A914
[6]   Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation [J].
Casimir, Anix ;
Zhang, Hanguang ;
Ogoke, Ogechi ;
Amine, Joseph C. ;
Lu, Jun ;
Wu, Gang .
NANO ENERGY, 2016, 27 :359-376
[7]   Pinecone-like hierarchical anatase TiO2 bonded with carbon enabling ultrahigh cycling rates for sodium storage [J].
Chen, Jun ;
Zou, Guoqiang ;
Hou, Hongshuai ;
Zhang, Yan ;
Huang, Zhaodong ;
Ji, Xiaobo .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (32) :12591-12601
[8]   Black Anatase Titania with Ultrafast Sodium-Storage Performances Stimulated by Oxygen Vacancies [J].
Chen, Jun ;
Ding, Zhiying ;
Wang, Chao ;
Hou, Hongshuai ;
Zhang, Yan ;
Wang, Chiwei ;
Zou, Guoqiang ;
Ji, Xiaobo .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (14) :9142-9151
[9]   Constructing Hierarchical Spheres from Large Ultrathin Anatase TiO2 Nanosheets with Nearly 100% Exposed (001) Facets for Fast Reversible Lithium Storage [J].
Chen, Jun Song ;
Tan, Yi Ling ;
Li, Chang Ming ;
Cheah, Yan Ling ;
Luan, Deyan ;
Madhavi, Srinivasan ;
Boey, Freddy Yin Chiang ;
Archer, Lynden A. ;
Lou, Xiong Wen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (17) :6124-6130
[10]   Recent advancement of SiOx, based anodes for lithium-ion batteries [J].
Chen, Tao ;
Wu, Ji ;
Zhang, Qinglin ;
Su, Xin .
JOURNAL OF POWER SOURCES, 2017, 363 :126-144