Normalized general relativity: Nonclosed universe and a zero cosmological constant

被引:10
作者
Davidson, Aharon [1 ]
Rubin, Shimon [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel
来源
PHYSICAL REVIEW D | 2014年 / 89卷 / 02期
关键词
GRAVITY;
D O I
10.1103/PhysRevD.89.024036
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We discuss the cosmological constant problem, at the minisuperspace level, within the framework of the so-called normalized general relativity. We prove that the Universe cannot be closed, and reassure that the accompanying cosmological constant. generically vanishes, at least classically. The theory does allow, however, for a special class of Lambda not equal 0 solutions which are associated with static closed Einstein universe and with Eddington-Lemaitre universe.
引用
收藏
页数:10
相关论文
共 49 条
[11]  
Chow B., 2004, THE RICCI FLOW AN IN
[12]   Dynamics of dark energy [J].
Copeland, Edmund J. ;
Sami, M. ;
Tsujikawa, Shinji .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2006, 15 (11) :1753-1935
[13]   Zero cosmological constant from normalized general relativity [J].
Davidson, Aharon ;
Rubin, Shimon .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (23)
[14]  
Dvali G., SFSFSD
[15]  
Dvali G., ARXIV HEP TH 0208096
[16]   The electrodynamics of material media [J].
Eckart, C .
PHYSICAL REVIEW, 1938, 54 (11) :920-923
[17]  
Eddington AS, 1929, MON NOT R ASTRON SOC, V90, P0668
[18]  
Einstein A., 1919, Siz. Preuss. Acad. Scis
[19]   Saltatory relaxation of the cosmological constant [J].
Feng, JL ;
March-Russell, J ;
Sethi, S ;
Wilczek, F .
NUCLEAR PHYSICS B, 2001, 602 (1-2) :307-328
[20]  
Gelfand I.M., 2000, Calculus_of_Variations