Sonic environment and vegetation structure: A methodological approach for a soundscape analysis of a Mediterranean maqui

被引:60
作者
Farina, Almo [1 ]
Pieretti, Nadia [1 ]
机构
[1] Univ Urbino, Dept Basic Sci & Fdn, I-61029 Urbino, Italy
关键词
Soundscape ecology; Acoustic Complexity Index; Birds; Mediterranean maqui; Sonotopes; Soundtopes; BIRD SONG; ACOUSTIC ENVIRONMENT; CLASSIFICATION; TRANSMISSION; BIODIVERSITY; RECORDINGS; COMPLEXITY; SELECTION; DISTANCE; FORESTS;
D O I
10.1016/j.ecoinf.2013.10.008
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Herein we present one of the first attempts to couple the complexity of vegetation and topographic features with the sonic environment to understand the distribution of bird species and individuals in their habitat. To achieve this, the sonic features of a bird community were studied during the spring and early summer of 2011 in a Mediterranean maqui located on the western slope of a remote hanging valley that is dominated by Erica arborea, Quercus ilex and Arbutus unedo. Species composition, height, vertical foliage profile, canopy density and dispersion of vegetation were utilized as probable proxies for the sonic patterns. The acoustic activity of birds was collected through the use of a regular matrix of 20 audio recorders, spaced 25 m apart, which were placed following the topographic isoclines. The sonic complexity of the soundscape was evaluated using the Acoustic Complexity Index (ACI), which is a recently developed metric. The PCA applied to the vegetation parameters revealed two principal distinguishing factors, which we were able to define as "vegetation density and structure" and "species segregation." Moreover, the results show that, even in the case of sampling sites that are very close together, sonic patterns vary across the season, highlighting the great variability of the soundscape and confirming the adequacy of the sampling scale of 25 m adopted in this study. The topographic features do not seem to be connected to the sonic environment. The main sonic complexity was found where the vegetation was taller and denser, especially where E. arborea was the dominant species. Although this proves that acoustic dynamics can be linked to vegetation structure, even on a small scale, a consistent element of sonic variability cannot be explained by vegetation patterns alone, and a soundtope hypothesis must be invoked. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:120 / 132
页数:13
相关论文
共 77 条
[1]  
[Anonymous], 2001, The Nature of Mediterranean Europe, An Ecological History
[2]  
[Anonymous], 2012, SOUNDSCAPEMETER USER
[3]  
[Anonymous], 1999, BIOL WILDLIFE MEDITE
[4]   Detecting bird sounds in a complex acoustic environment and application to bioacoustic monitoring [J].
Bardeli, R. ;
Wolff, D. ;
Kurth, F. ;
Koch, M. ;
Tauchert, K. -H. ;
Frommolt, K. -H. .
PATTERN RECOGNITION LETTERS, 2010, 31 (12) :1524-1534
[5]  
Bibby C.J., 1992, BIRD CENSUS TECHNIQU
[6]  
BLONDEL J, 1973, Alauda, V41, P63
[7]   SIMPLE AND RAPID METHOD FOR QUANTITATIVE DESCRIPTION OF AVIAN HABITATS - STRATISCOPE [J].
BLONDEL, J ;
CUVILLIER, R .
OIKOS, 1977, 29 (02) :326-331
[8]   Acoustic monitoring in terrestrial environments using microphone arrays: applications, technological considerations and prospectus [J].
Blumstein, Daniel T. ;
Mennill, Daniel J. ;
Clemins, Patrick ;
Girod, Lewis ;
Yao, Kung ;
Patricelli, Gail ;
Deppe, Jill L. ;
Krakauer, Alan H. ;
Clark, Christopher ;
Cortopassi, Kathryn A. ;
Hanser, Sean F. ;
McCowan, Brenda ;
Ali, Andreas M. ;
Kirschel, Alexander N. G. .
JOURNAL OF APPLIED ECOLOGY, 2011, 48 (03) :758-767
[9]   Spatial heterogeneity of ambient sound at the habitat type level: ecological implications and applications [J].
Bormpoudakis, Dimitrios ;
Sueur, Jerome ;
Pantis, John D. .
LANDSCAPE ECOLOGY, 2013, 28 (03) :495-506
[10]   Are bird song complexity and song sharing shaped by habitat structure? An information theory and statistical approach [J].
Briefer, Elodie ;
Osiejuk, Tomasz S. ;
Rybak, Fanny ;
Aubin, Thierry .
JOURNAL OF THEORETICAL BIOLOGY, 2010, 262 (01) :151-164