Hydrothermal preparation of Fe2O3/graphene nanocomposite and its enhanced catalytic activity on the thermal decomposition of ammonium perchlorate

被引:140
作者
Yuan, Yuan [1 ]
Jiang, Wei [1 ]
Wang, Yujiao [1 ]
Shen, Ping [1 ]
Li, Fengsheng [1 ]
Li, Pingyun [1 ]
Zhao, Fengqi [2 ]
Gao, Hongxu [2 ]
机构
[1] Nanjing Univ Sci & Technol, Natl Special Superfine Powder Engn Res Ctr, Nanjing 210094, Jiangsu, Peoples R China
[2] Xian Modern Chem Res Inst, Xian 710065, Peoples R China
基金
中国国家自然科学基金;
关键词
Fe2O3; Graphene; Ammonium perchlorate; Nanocomposite; Thermal decomposition; FUNCTIONALIZED GRAPHENE; GRAPHITE OXIDE; SOLVOTHERMAL SYNTHESIS; REVERSIBLE CAPACITY; CARBON NANOTUBES; IN-VITRO; LITHIUM; NANOPARTICLES; REDUCTION; SHEETS;
D O I
10.1016/j.apsusc.2014.03.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fe2O3/graphene nanocomposite was prepared by a facile hydrothermal method, during which graphene oxides (GOs) were reduced to graphene with hydrazine and Fe2O3 nanoparticles were simultaneously anchored on graphene sheets. The morphology of the obtained Fe2O3/graphene nanocomposite was investigated by scanning electron microscopy (SEM) and transmission electron microscope (TEM). It was revealed by TEM images that Fe2O3 nanoparticles grew well on the surfaces of graphene. As much as I know, this new nanocomposite has not been investigated as a catalyst on the thermal decomposition of AP yet. In this work, the catalytic performance of the synthesized material on the thermal decomposition of ammonium perchlorate ( AP) was investigated creatively by differential scanning calorimetry (DSC). The results of DSC indicated that graphene obviously improved the catalytic activity of Fe2O3 on the thermal decomposition of AP due to its high specific area. (C) 2014 Elsevier B. V. All rights reserved.
引用
收藏
页码:354 / 359
页数:6
相关论文
共 51 条
[1]  
Ayala P., 2010, CARBON, V48, P575
[2]   Graphene-based liquid crystal device [J].
Blake, Peter ;
Brimicombe, Paul D. ;
Nair, Rahul R. ;
Booth, Tim J. ;
Jiang, Da ;
Schedin, Fred ;
Ponomarenko, Leonid A. ;
Morozov, Sergey V. ;
Gleeson, Helen F. ;
Hill, Ernie W. ;
Geim, Andre K. ;
Novoselov, Kostya S. .
NANO LETTERS, 2008, 8 (06) :1704-1708
[3]   Thermal decomposition of ammonium perchlorate [J].
Boldyrev, VV .
THERMOCHIMICA ACTA, 2006, 443 (01) :1-36
[4]   Preparation of fully exfoliated graphite oxide nanoplatelets in organic solvents [J].
Cai, Dongyu ;
Song, Mo .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (35) :3678-3680
[5]   A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate [J].
Chaturvedi, Shalini ;
Dave, Pragnesh N. .
JOURNAL OF SAUDI CHEMICAL SOCIETY, 2013, 17 (02) :135-149
[6]   α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications [J].
Chen, J ;
Xu, LN ;
Li, WY ;
Gou, XL .
ADVANCED MATERIALS, 2005, 17 (05) :582-+
[7]   Activity of Candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles [J].
Dyal, A ;
Loos, K ;
Noto, M ;
Chang, SW ;
Spagnoli, C ;
Shafi, KVPM ;
Ulman, A ;
Cowman, M ;
Gross, RA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (07) :1684-1685
[8]  
Eichler A, 2011, NAT NANOTECHNOL, V6, P339, DOI [10.1038/NNANO.2011.71, 10.1038/nnano.2011.71]
[9]   Flame and surface structure of laminate propellants with coarse and fine ammonium perchlorate [J].
Fitzgerald, RP ;
Brewster, MQ .
COMBUSTION AND FLAME, 2004, 136 (03) :313-326
[10]   Intercalation and stitching of graphite oxide with diaminoalkanes [J].
Herrera-Alonso, Margarita ;
Abdala, Ahmed A. ;
McAllister, Michael J. ;
Aksay, Ilhan A. ;
Prud'homme, Robert K. .
LANGMUIR, 2007, 23 (21) :10644-10649