COMON'S CONJECTURE, RANK DECOMPOSITION, AND SYMMETRIC RANK DECOMPOSITION OF SYMMETRIC TENSORS

被引:21
|
作者
Zhang, Xinzhen [1 ]
Huang, Zheng-Hai [1 ]
Qi, Liqun [2 ]
机构
[1] Tianjin Univ, Sch Sci, Dept Math, Tianjin 300072, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
tensor; rank; symmetric rank; rank decomposition; symmetric rank decomposition;
D O I
10.1137/141001470
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Comon's Conjecture claims that for a symmetric tensor, its rank and its symmetric rank coincide. We show that this conjecture is true under an additional assumption that the rank of that tensor is not larger than its order. Moreover, if its rank is less than its order, then all rank decompositions are necessarily symmetric rank decompositions.
引用
收藏
页码:1719 / 1728
页数:10
相关论文
共 50 条
  • [1] Rank-r decomposition of symmetric tensors
    Wen, Jie
    Ni, Qin
    Zhu, Wenhuan
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (06) : 1339 - 1355
  • [2] Rank-r decomposition of symmetric tensors
    Jie Wen
    Qin Ni
    Wenhuan Zhu
    Frontiers of Mathematics in China, 2017, 12 : 1339 - 1355
  • [3] Rank decomposition and symmetric rank decomposition over arbitrary fields
    Huang, Riguang
    Zheng, Baodong
    Song, Xiaoyu
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (20): : 5888 - 5901
  • [4] Efficient trace-free decomposition of symmetric tensors of arbitrary rank
    Toth, Viktor T.
    Turyshev, Slava G.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2022, 19 (13)
  • [5] Symmetric tensors: rank, Strassen's conjecture and e-computability
    Carlini, Enrico
    Catalisano, Maria Virginia
    Chiantini, Luca
    Geramita, Anthony V.
    Woo, Youngho
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2018, 18 (01) : 363 - 390
  • [6] REMARKS ON THE SYMMETRIC RANK OF SYMMETRIC TENSORS
    Friedland, Shmuel
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2016, 37 (01) : 320 - 337
  • [7] Computing symmetric rank for symmetric tensors
    Bernardi, Alessandra
    Gimigliano, Alessandro
    Ida, Monica
    JOURNAL OF SYMBOLIC COMPUTATION, 2011, 46 (01) : 34 - 53
  • [8] SYMMETRIC TENSORS AND SYMMETRIC TENSOR RANK
    Comon, Pierre
    Golub, Gene
    Lim, Lek-Heng
    Mourrain, Bernard
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (03) : 1254 - 1279
  • [9] MORE ON TENSORS WITH DIFFERENT RANK AND SYMMETRIC RANK
    Shitov, Yaroslav
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2024, 45 (01) : 419 - 428
  • [10] On the decomposition of symmetric tensors into traceless symmetric tensors
    Jaric, JP
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2003, 41 (18) : 2123 - 2141