Explosive Growth in Biased Dynamic Percolation on Two-Dimensional Regular Lattice Networks

被引:165
作者
Ziff, Robert M. [1 ,2 ]
机构
[1] Univ Michigan, Ctr Study Complex Syst, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
15;
D O I
10.1103/PhysRevLett.103.045701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The growth of two-dimensional lattice bond percolation clusters through a cooperative Achlioptas type of process, where the choice of which bond to occupy next depends upon the masses of the clusters it connects, is shown to go through an explosive, first-order kinetic phase transition with a sharp jump in the mass of the largest cluster as the number of bonds is increased. The critical behavior of this growth model is shown to be of a different universality class than standard percolation.
引用
收藏
页数:4
相关论文
共 15 条
[1]   Explosive Percolation in Random Networks [J].
Achlioptas, Dimitris ;
D'Souza, Raissa M. ;
Spencer, Joel .
SCIENCE, 2009, 323 (5920) :1453-1555
[2]   Product rule wins a competitive game [J].
Beveridge, Andrew ;
Bohman, Tom ;
Frieze, Alan ;
Pikhurko, Oleg .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (10) :3061-3071
[3]  
CHO YS, ARXIV09070309
[4]   Molecular size distribution in three dimensional polymers. I. Gelation [J].
Flory, PJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1941, 63 :3083-3090
[5]   Avoiding Small Subgraphs in Achlioptas Processes [J].
Krivelevich, Michael ;
Loh, Po-Shen ;
Sudakov, Benny .
RANDOM STRUCTURES & ALGORITHMS, 2009, 34 (01) :165-195
[6]   The effects of surface defects in a catalysis model [J].
Lorenz, CD ;
Haghgooie, R ;
Kennebrew, C ;
Ziff, RM .
SURFACE SCIENCE, 2002, 517 (1-3) :75-86
[7]  
Marro J., 1999, Collection Alea-Saclay: Monographs and Texts in Statistical Physics
[8]   Efficient Monte Carlo algorithm and high-precision results for percolation [J].
Newman, MEJ ;
Ziff, RM .
PHYSICAL REVIEW LETTERS, 2000, 85 (19) :4104-4107
[9]  
Newman MEJ., 2006, STRUCTURE DYNAMICS N
[10]  
RADICCHI F, ARXIV09070755