Efficient DOA estimation based on variable least Lncosh algorithm under impulsive noise interferences

被引:13
作者
Guo, Kun [1 ,2 ,3 ]
Guo, Longxiang [1 ,2 ,3 ]
Li, Yingsong [4 ]
Zhang, Liang [1 ,2 ,3 ]
Dai, Zehua [1 ,2 ,3 ]
Yin, Jingwei [1 ,2 ,3 ]
机构
[1] Harbin Engn Univ, Acoust Sci & Technol Lab, Harbin 150001, Peoples R China
[2] Harbin Engn Univ, Key Lab Marine Informat Acquisit & Secur, Minist Ind & Informat Technol, Harbin 150001, Peoples R China
[3] Harbin Engn Univ, Coll Underwater Acoust Engn, Harbin 150001, Peoples R China
[4] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Lncosh function; DOA estimation; Adaptive nulling array; Variable step-size; OF-ARRIVAL ESTIMATION; SQUARE ERROR ANALYSIS; MAXIMUM-LIKELIHOOD; FILTERS; ESPRIT;
D O I
10.1016/j.dsp.2021.103383
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Lncosh function, a natural logarithm function that composes of hyperbolic cosine function, is thought of a compromise distribution between mean-absolute-error (MAE) and mean-square-error (MSE) via a regularization factor r (r > 0), which will provide potential superior performance in both Gaussian and impulsive noise environments. In this paper, a new DOA estimation algorithm is developed based on adaptive nulling technology and variable-parameter adaptive algorithm that is realized to reconstruct Lncosh function to modify least Lncosh (LL) algorithm to implement efficient DOAs for a wider range of applications. In the proposed algorithm, variable r-parameter and variable step-size schemes are devised to improve the LL algorithm. The DOA estimation capacity, root-mean-square error and mean stability for the proposed improved LL algorithm are analyzed under various noises including impulsive noise. The behavior of the devised variable LL algorithm is verified and discussed using simulations and experiments. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 32 条
[1]  
Abramowitz M., 1988, AM J PHYS, V56, P958, DOI [10.1119/1.15378, DOI 10.1119/1.15378]
[2]   Robust Recursive Least-Squares Adaptive-Filtering Algorithm for Impulsive-Noise Environments [J].
Bhotto, Md. Zulfiquar Ali ;
Antoniou, Andreas .
IEEE SIGNAL PROCESSING LETTERS, 2011, 18 (03) :185-188
[3]   Steady-State Mean-Square Error Analysis for Adaptive Filtering under the Maximum Correntropy Criterion [J].
Chen, Badong ;
Xing, Lei ;
Liang, Junli ;
Zheng, Nanning ;
Principe, Jose C. .
IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (07) :880-884
[4]   SMOOTHING REFERENCE CENTILE CURVES - THE LMS METHOD AND PENALIZED LIKELIHOOD [J].
COLE, TJ ;
GREEN, PJ .
STATISTICS IN MEDICINE, 1992, 11 (10) :1305-1319
[5]  
Gabel R.A, 1982, J ACOUST SOC AM, V72
[6]   Spatial consistency for multiple source direction-of-arrival estimation and source counting [J].
Hafezi, Sina ;
Moore, Alastair H. ;
Naylor, Patrick A. .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2019, 146 (06) :4592-4603
[7]   Efficient Direction-of-Arrival Estimation Method Based on Variable-Step-Size LMS Algorithm [J].
Jalal, Babur ;
Yang, Xiaopeng ;
Wu, Xuchen ;
Long, Teng ;
Sarkar, Tapan K. .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2019, 18 (08) :1576-1580
[8]   Maximum likelihood optimal and robust Support Vector Regression with lncosh loss function [J].
Karal, Omer .
NEURAL NETWORKS, 2017, 94 :1-12
[9]  
Kocaoglu A, 2013, 2013 8TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ELECO), P329
[10]   Maximum-likelihood array processing in non-Gaussian noise with Gaussian mixtures [J].
Kozick, RJ ;
Sadler, BM .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (12) :3520-3535