Comparative study of quantum anharmonic potentials

被引:8
作者
Amore, P
Aranda, A
De Pace, A
López, JA
机构
[1] Univ Colima, Fac Ciencias, Colima, Mexico
[2] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy
[3] Univ Texas, Dept Phys, El Paso, TX 79968 USA
关键词
anharmonic oscillator; quantum mechanics; optimized perturbation theory;
D O I
10.1016/j.physleta.2004.07.017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We perform a study of various anharmonic potentials using a recently developed method. We calculate both the wave functions and the energy eigenvalues for the ground and first excited states of the quartic, sextic and octic potentials with high precision, comparing the results with other techniques available in the literature. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:451 / 458
页数:8
相关论文
共 17 条
[1]   A new method for the solution of the Schrodinger equation [J].
Amore, P ;
Aranda, A ;
De Pace, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (10) :3515-3525
[2]   Convergent sequences of perturbative approximations for the anharmonic oscillator .1. Harmonic approach [J].
Bellet, B ;
Garcia, P ;
Neveu, A .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1996, 11 (31) :5587-5606
[3]   Multiple-scale analysis of quantum systems [J].
Bender, CM ;
Bettencourt, LMA .
PHYSICAL REVIEW D, 1996, 54 (12) :7710-7723
[4]   NONPERTURBATIVE PHYSICS FROM INTERPOLATING ACTIONS [J].
DUNCAN, A ;
MOSHE, M .
PHYSICS LETTERS B, 1988, 215 (02) :352-358
[5]   CONVERGENCE OF SCALED DELTA-EXPANSION - ANHARMONIC-OSCILLATOR [J].
GUIDA, R ;
KONISHI, K ;
SUZUKI, H .
ANNALS OF PHYSICS, 1995, 241 (01) :152-184
[6]   Optimized perturbation theory for wave functions of quantum systems [J].
Hatsuda, T ;
Kunihiro, T ;
Tanaka, T .
PHYSICAL REVIEW LETTERS, 1997, 78 (17) :3229-3232
[7]   CONVERGENT STRONG-COUPLING EXPANSIONS FROM DIVERGENT WEAK-COUPLING PERTURBATION-THEORY [J].
JANKE, W ;
KLEINERT, H .
PHYSICAL REVIEW LETTERS, 1995, 75 (15) :2787-2791
[8]   CONVERGENCE BEHAVIOR OF VARIATIONAL PERTURBATION EXPANSION - A METHOD FOR LOCATING BENDER-WU SINGULARITIES [J].
KLEINERT, H ;
JANKE, W .
PHYSICS LETTERS A, 1995, 206 (5-6) :283-289
[9]  
Le Guillou J.C., 1990, LARGE ORDER BEHAV PE, V7
[10]   Quartic, sextic, and octic anharmonic oscillators: Precise energies of ground state and excited states by an iterative method based on the generalized Bloch equation [J].
Meissner, H ;
Steinborn, EO .
PHYSICAL REVIEW A, 1997, 56 (02) :1189-1200