Membranes with Thin Hydrogel Selective Layers Containing Viral-Templated Palladium Nanoparticles for the Catalytic Reduction of Cr(VI) to Cr(III)

被引:29
作者
Sadeghi, Ilin [1 ,2 ]
Liu, Eric Y. [1 ]
Yi, Hyunmin [1 ]
Asatekin, Ayse [1 ]
机构
[1] Tufts Univ, Chem & Biol Engn Dept, Medford, MA 02155 USA
[2] MIT, David H Koch Inst Integrat Canc Res, 500 Main St, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
catalytic membrane; hydrogel; ultrathin; hybrid membrane; biotemplated nanomaterials; TOBACCO-MOSAIC-VIRUS; HEXAVALENT CHROMIUM; BIOLOGICAL APPLICATIONS; PD NANOPARTICLES; DRINKING-WATER; PVDF MEMBRANE; FORMIC-ACID; REMOVAL; DEGRADATION; MICROPARTICLES;
D O I
10.1021/acsanm.9b01099
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Membranes that simultaneously remove large organic molecules and catalytically treat smaller contaminants can provide a simple, compact, single-step water treatment solution. Incorporating nanoparticles (NPs) into membranes can impart catalytic activity but is extremely challenging to achieve while preventing aggregation, maintaining high stability, and retaining accessibility to the NP surfaces. Here, we present a new tunable and scalable strategy, interfacially initiated free radical polymerization (IIFRP), for hybrid water filtration membranes incorporating small, uniform, well-dispersed catalytic NPs immobilized on tobacco mosaic virus (TMV) nanotemplates within their ultrathin hydrogel selective layers. Hybrid membranes are prepared by adding the TMV-templated NPs to the monomer solution during IIFRP. These membranes catalytically reduce Cr(VI), an acutely toxic and carcinogenic contaminant, to Cr(III), an essential nutrient. The catalytic NPs are fully accessible to the reactants within the hydrogel and exhibit extremely high catalytic activity, achieving up to 98% conversion in a single pass. Furthermore, because of the hydrogel network, these NPs are exceptionally stable, fully retaining their catalytic activity with continuous filtration for at least 3 days. These results illustrate a versatile approach for integration of various nanomaterials within membrane selective layers, enabling the creation of advanced membranes with new and versatile functionalities for next-generation applications.
引用
收藏
页码:5233 / 5244
页数:23
相关论文
共 76 条
[21]   Efficient Catalytic Reduction of Hexavalent Chromium Using Palladium Nanoparticle-Immobilized Electrospun Polymer Nanofibers [J].
Huang, Yunpeng ;
Ma, Hui ;
Wang, Shige ;
Shen, Mingwu ;
Guo, Rui ;
Cao, Xueyan ;
Zhu, Meifang ;
Shi, Xiangyang .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (06) :3054-3061
[22]  
Joan E.M., 2012, Journal (American Water Works Association), V104, pE348
[23]   Crosslinked poly(ethylene oxide) fouling resistant coating materials for oil/water separation [J].
Ju, Hao ;
McCloskey, Bryan D. ;
Sagle, Alyson C. ;
Wu, Yuan-Hsuan ;
Kusuma, Victor A. ;
Freeman, Benny D. .
JOURNAL OF MEMBRANE SCIENCE, 2008, 307 (02) :260-267
[24]   PRIORITY POLLUTANTS I-A PERSPECTIVE VIEW [J].
KEITH, LH ;
TELLIARD, WA .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1979, 13 (04) :416-423
[25]   High-performance reverse osmosis nanocomposite membranes containing the mixture of carbon nanotubes and graphene oxides [J].
Kim, Hee Joong ;
Lim, Min-Young ;
Jung, Kyung Hwa ;
Kim, Dong-Gyun ;
Lee, Jong-Chan .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (13) :6798-6809
[26]   Anaerobic Fluidized Bed Membrane Bioreactor for Wastewater Treatment [J].
Kim, Jeonghwan ;
Kim, Kihyun ;
Ye, Hyoungyoung ;
Lee, Eunyoung ;
Shin, Chungheon ;
McCarty, Perry L. ;
Bae, Jaeho .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (02) :576-581
[27]   Chromium occurrence in the environment and methods of its speciation [J].
Kotas, J ;
Stasicka, Z .
ENVIRONMENTAL POLLUTION, 2000, 107 (03) :263-283
[28]   Fouling in membrane bioreactors used in wastewater treatment [J].
Le-Clech, Pierre ;
Chen, Vicki ;
Fane, Tony A. G. .
JOURNAL OF MEMBRANE SCIENCE, 2006, 284 (1-2) :17-53
[29]   Improved metal cluster deposition on a genetically engineered tobacco mosaic virus template [J].
Lee, SY ;
Royston, E ;
Culver, JN ;
Harris, MT .
NANOTECHNOLOGY, 2005, 16 (07) :S435-S441
[30]   Reactive nanostructured membranes for water purification [J].
Lewis, Scott R. ;
Datta, Saurav ;
Gui, Minghui ;
Coker, Eric L. ;
Huggins, Frank E. ;
Daunert, Sylvia ;
Bachas, Leonidas ;
Bhattacharyya, Dibakar .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (21) :8577-8582