Mirror-backed Dark Alumina: A Nearly Perfect Absorber for Thermoelectronics and Thermophotovotaics

被引:43
作者
Farhat, Mohamed [1 ]
Cheng, Tsung-Chieh [2 ]
Le, Khai Q. [3 ]
Cheng, Mark Ming-Cheng [4 ]
Bagci, Hakan [1 ]
Chen, Pai-Yen [4 ]
机构
[1] King Abdullah Univ Sci & Technol, Div Comp Elect & Math Sci & Engn, Thuwal 2395569100, Saudi Arabia
[2] Natl Kaohsiung Univ Appl Sci KUAS, Dept Mech Engn, Kaohsiung 80778, Taiwan
[3] Univ Minnesota, Dept Elect Engn, Duluth, MN 55812 USA
[4] Wayne State Univ, Dept Elect & Comp Engn, Detroit, MI 48202 USA
关键词
LIGHT-ABSORPTION; ANTIREFLECTION STRUCTURES; BAND; METAL; FABRICATION; ARRAYS; PHOTODETECTION; GENERATION; EFFICIENCY; CONVERSION;
D O I
10.1038/srep19984
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present here a broadband, wide-angle, and polarization-independent nearly perfect absorber consisting of mirror-backed nanoporous alumina. By electrochemically anodizing the disordered multicomponent aluminum and properly tailoring the thickness and air-filling fraction of nanoporous alumina, according to the Maxwell-Garnet mixture theory, a large-area dark alumina can be made with excellent photothermal properties and absorption larger than 93% over a wide wavelength range spanning from near-infrared to ultraviolet light, i.e. 250 nm-2500 nm. The measured absorption is orders of magnitude greater than other reported anodized porous alumina, typically semi-transparent at similar wavelengths. This simple yet effective approach, however, does not require any lithography, nano-mixture deposition, pre- and post-treatment. Here, we also envisage and theoretically investigate the practical use of proposed absorbers and/or photothermal converters in integrated thermoelectronic and/or thermophotovoltaic energy conversion devices, which make efficient use of the entire spectrum of ambient visible to near-infrared radiation.
引用
收藏
页数:11
相关论文
共 64 条
[1]  
Alù A, 2011, PHYS REV LETT, V106, DOI [10.1103/PhysRevLett.106.123902, 10.1109/CLEOE.2011.5943650]
[2]   An ultra-broadband multilayered graphene absorber [J].
Amin, Muhammad ;
Farhat, Mohamed ;
Bagci, Hakan .
OPTICS EXPRESS, 2013, 21 (24) :29938-29948
[3]  
[Anonymous], 1990, METALS HDB PROPERTIE, V2
[4]   Broadband Metallic Absorber on a Non-Planar Substrate [J].
Ao, Xianyu ;
Wang, Xuyue ;
Yin, Guanbo ;
Dang, Kangkang ;
Xue, Yali ;
He, Sailing .
SMALL, 2015, 11 (13) :1526-1530
[5]   Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces [J].
Argyropoulos, Christos ;
Le, Khai Q. ;
Mattiucci, Nadia ;
D'Aguanno, Giuseppe ;
Alu, Andrea .
PHYSICAL REVIEW B, 2013, 87 (20)
[6]   Boosting optical nonlinearities in ε-near-zero plasmonic channels [J].
Argyropoulos, Christos ;
Chen, Pai-Yen ;
D'Aguanno, Giuseppe ;
Engheta, Nader ;
Alu, Andrea .
PHYSICAL REVIEW B, 2012, 85 (04)
[7]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/NMAT2629, 10.1038/nmat2629]
[8]   Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers [J].
Aydin, Koray ;
Ferry, Vivian E. ;
Briggs, Ryan M. ;
Atwater, Harry A. .
NATURE COMMUNICATIONS, 2011, 2
[9]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[10]   Periodic nanostructures for photonics [J].
Busch, K. ;
von Freymann, G. ;
Linden, S. ;
Mingaleev, S. F. ;
Tkeshelashvili, L. ;
Wegener, M. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2007, 444 (3-6) :101-202