Metastability in the formation of an experimental traffic jam

被引:43
|
作者
Nakayama, Akihiro [1 ]
Fukui, Minoru [2 ]
Kikuchi, Macoto [3 ]
Hasebe, Katsuya [4 ]
Nishinari, Katsuhiro [5 ,6 ]
Sugiyama, Yuki [7 ]
Tadaki, Shin-ichi [8 ]
Yukawa, Satoshi [9 ]
机构
[1] Meijo Univ, Fac Sci & Technol, Nagoya, Aichi 4688502, Japan
[2] Nakanihon Automot Coll, Sakahogi 5050077, Japan
[3] Osaka Univ, Cybermedia Ctr, Toyonaka, Osaka 5600043, Japan
[4] Aichi Univ, Miyoshi 4700296, Japan
[5] Univ Tokyo, Dept Aeronaut & Astronaut, Bunkyo Ku, Tokyo 1138656, Japan
[6] Japan Sci & Technol Agcy, PRESTO, Bunkyo Ku, Tokyo 1138656, Japan
[7] Nagoya Univ, Dept Complex Syst Sci, Nagoya, Aichi 4648601, Japan
[8] Saga Univ, Comp & Network Ctr, Saga 8408502, Japan
[9] Osaka Univ, Dept Earth & Space Sci, Toyonaka, Osaka 5600043, Japan
来源
NEW JOURNAL OF PHYSICS | 2009年 / 11卷
关键词
PHASE-TRANSITIONS; SYSTEMS; PHYSICS; STATES; MODEL; FLOW;
D O I
10.1088/1367-2630/11/8/083025
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show detailed data about the process of jam formation in a traffic experiment on a circuit without any bottlenecks. The experiment was carried out using a circular road on a flat ground. At the initial stage, vehicles are running homogeneously distributed on the circuit with the same velocity, but roughly 10 min later a traffic jam emerges spontaneously on the circuit. In the process of the jam formation, we found a homogeneous flow with large velocity is temporarily realized before a jam cluster appears. The instability of such a homogeneous flow is the key to understanding jam formation.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Formation and Propagation of Local Traffic Jam
    Qi, Hong-sheng
    Wang, Dian-hai
    Chen, Peng
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2013, 2013
  • [2] Critical Density of Experimental Traffic Jam
    Tadaki, Shin-ichi
    Kikuchi, Macoto
    Fukui, Minoru
    Nakayama, Akihiro
    Nishinari, Katsuhiro
    Shibata, Akihiro
    Sugiyama, Yuki
    Yosida, Taturu
    Yukawa, Satoshi
    TRAFFIC AND GRANULAR FLOW '13, 2015, : 505 - 511
  • [3] A model of irreversible jam formation in dense traffic
    Brankov, J. G.
    Bunzarova, N. Zh.
    Pesheva, N. C.
    Priezzhev, V. B.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 494 : 340 - 350
  • [4] Coarse analysis of collective behaviors: Bifurcation analysis of the optimal velocity model for traffic jam formation
    Miura, Yasunari
    Sugiyama, Yuki
    PHYSICS LETTERS A, 2017, 381 (48) : 3983 - 3988
  • [5] Phase transition in traffic jam experiment on a circuit
    Tadaki, Shin-ichi
    Kikuchi, Macoto
    Fukui, Minoru
    Nakayama, Akihiro
    Nishinari, Katsuhiro
    Shibata, Akihiro
    Sugiyama, Yuki
    Yosida, Taturu
    Yukawa, Satoshi
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [6] A new mechanism for metastability of under-saturated traffic responsible for time-delayed traffic breakdown at the signal
    Jiang, Rui
    Hu, Mao-Bin
    Jia, Bin
    Gao, Zi-You
    COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (05) : 1439 - 1442
  • [7] Exciting traffic jams: Nonlinear phenomena behind traffic jam formation on highways
    Orosz, Gabor
    Wilson, R. Eddie
    Szalai, Robert
    Stepan, Gabor
    PHYSICAL REVIEW E, 2009, 80 (04):
  • [8] Analytical solutions of jam pattern formation on a ring for a class of optimal velocity traffic models
    Gaididei, Yu B.
    Berkemer, R.
    Caputo, J. G.
    Christiansen, P. L.
    Kawamoto, A.
    Shiga, T.
    Sorensen, M. P.
    Starke, J.
    NEW JOURNAL OF PHYSICS, 2009, 11
  • [9] Large traffic jam formation induced by multiple crossings in city network
    Nagatani, Takashi
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2025, 661
  • [10] City traffic jam relief by stochastic resonance
    Castillo, F.
    Toledo, B. A.
    Munoz, V.
    Rogan, J.
    Zarama, R.
    Kiwi, M.
    Valdivia, J. A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 403 : 65 - 70