Ignorant vs. Anonymous Recommendations

被引:0
作者
Uitto, Jara [1 ]
Wattenhofer, Roger [1 ]
机构
[1] Swiss Fed Inst Technol, Zurich, Switzerland
来源
ALGORITHMS - ESA 2015 | 2015年 / 9294卷
关键词
D O I
10.1007/978-3-662-48350-3_83
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We start with an unknown binary n x m matrix, where the entries correspond to the preferences of n users on m items. The goal is to find at least one item per user that the user likes, with as few queries as possible. Since there are matrices where any algorithm performs badly without any preliminary knowledge of the input matrix, we reveal an anonymized version of the input matrix to the algorithm in the beginning of the execution. The input matrix is anonymized by shuffling the rows according to a randomly chosen hidden permutation. We observe that this anonymous recommendation problem can be seen as an adaptive variant of the Min Sum Set Cover problem and show that the greedy solution for the original version of the problem provides a constant approximation for the adaptive version.
引用
收藏
页码:1001 / 1012
页数:12
相关论文
共 19 条
  • [1] A competitive analysis of the list update problem with lookahead
    Albers, S
    [J]. THEORETICAL COMPUTER SCIENCE, 1998, 197 (1-2) : 95 - 109
  • [2] Alon Noga, 2006, P 18 S PAR ALG ARCH, P261
  • [3] Awerbuch B, 2005, PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1174
  • [4] Azar Y, 2011, PROCEEDINGS OF THE TWENTY-SECOND ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1070
  • [5] On chromatic sums and distributed resource allocation
    Bar-Noy, A
    Bellare, M
    Halldorsson, MM
    Shachnai, H
    Tamir, T
    [J]. INFORMATION AND COMPUTATION, 1998, 140 (02) : 183 - 202
  • [6] An Ascending Vickrey Auction for Selling Bases of a Matroid
    Bikhchandani, Sushil
    de Vries, Sven
    Schummer, James
    Vohra, Rakesh V.
    [J]. OPERATIONS RESEARCH, 2011, 59 (02) : 400 - 413
  • [7] Approximating the Stochastic Knapsack Problem: The Benefit of Adaptivity
    Dean, Brian C.
    Goemans, Michel X.
    Vondrak, Jan
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2008, 33 (04) : 945 - 964
  • [8] Drineas P., 2002, P 34 ANN ACM S THEOR, P82
  • [9] Approximating min sum set cover
    Feige, U
    Lovász, L
    Tetali, P
    [J]. ALGORITHMICA, 2004, 40 (04) : 219 - 234
  • [10] Stochastic covering and adaptivity
    Goemans, M
    Vondrák, J
    [J]. LATIN 2006: THEORETICAL INFORMATICS, 2006, 3887 : 532 - 543