First Steps Towards a Formalization of Forcing

被引:2
作者
Gunther, Emmanuel [1 ]
Pagano, Miguel [1 ]
Sanchez Terraf, Pedro [2 ]
机构
[1] Univ Nacl Cordoba, FaMAF, Cordoba, Argentina
[2] Univ Nacl Cordoba, CIEM FaMAF, Cordoba, Argentina
关键词
Isabelle/ZF; forcing; preorder; Rasiowa-Sikorski lemma; names; generic extension; SET-THEORY;
D O I
10.1016/j.entcs.2019.07.008
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We lay the ground for an Isabelle/ZF formalization of Cohen's technique of forcing. We formalize the definition of forcing notions as preorders with top, dense subsets, and generic filters. We formalize a version of the principle of Dependent Choices and using it we prove the Rasiowa-Sikorski lemma on the existence of generic filters. Given a transitive set M, we define its generic extension M[G], the canonical names for elements of M, and finally show that if M satisfies the axiom of pairing, then M[G] also does. We also prove that M[G] is transitive.
引用
收藏
页码:119 / 136
页数:18
相关论文
共 22 条
[1]  
[Anonymous], ANN MATH STUDIES
[2]  
Ballarin C., 2010, Contribuciones cientificas en honor de Mirian Andres Gomez, P123
[3]  
Blanchette Jasmin Christian, 2014, Interactive Theorem Proving. 5th International Conference, ITP 2014, Held as Part of the Vienna Summer of Logic, VSL 2014. Proceedings: LNCS 8558, P111, DOI 10.1007/978-3-319-08970-6_8
[5]  
Gonthier G., 2008, Not. AMS, V55, P1382
[6]   A FORMAL PROOF OF THE KEPLER CONJECTURE [J].
Hales, Thomas ;
Adams, Mark ;
Bauer, Gertrud ;
Tat Dat Dang ;
Harrison, John ;
Le Truong Hoang ;
Kaliszyk, Cezary ;
Magron, Victor ;
Mclaughlin, Sean ;
Tat Thang Nguyen ;
Quang Truong Nguyen ;
Nipkow, Tobias ;
Obua, Steven ;
Pleso, Joseph ;
Rute, Jason ;
Solovyev, Alexey ;
Thi Hoai An Ta ;
Nam Trung Tran ;
Thi Diep Trieu ;
Urban, Josef ;
Vu, Ky ;
Zumkeller, Roland .
FORUM OF MATHEMATICS PI, 2017, 5
[7]  
Kunen K., 2013, STUDIES LOGIC
[8]  
Moschovakis Yiannis N., 1994, SPRINGER TEXTS ELECT
[9]  
Obua S, 2006, LECT NOTES COMPUT SC, V4281, P272
[10]  
Paulson L.C., 2003, LMS J. Comput. Math., V6, P198, DOI [10.1112/S1461157000000449, DOI 10.1112/S1461157000000449]