A new class of operators and a description of adjoints of composition operators

被引:42
作者
Cowen, Carl C.
Gallardo-Gutierrez, Eva A.
机构
[1] Univ Zaragoza, Dept Matemat, E-50009 Zaragoza, Spain
[2] Indiana Univ Purdue Univ, Sch Sci, Indianapolis, IN 46202 USA
关键词
adjoint of an operator; composition operator; reproducing kernel;
D O I
10.1016/j.jfa.2006.04.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Starting with a general formula, precise but difficult to use, for the adjoint of a composition operator on a functional Hilbert space, we compute an explicit formula on the classical Hardy Hilbert space for the adjoint of a composition operator with rational symbol. To provide a foundation for this formula, we study an extension to the definitions of composition, weighted composition, and Toeplitz operators to include symbols that are multiple-valued functions. These definitions can be made on any Banach space of analytic functions on a plane domain, but in this work, our attention is focused on the basic properties needed for the application to operators on the standard Hardy and Bergman Hilbert spaces on the unit disk. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:447 / 462
页数:16
相关论文
共 12 条
[1]  
[Anonymous], LECT NOTES PURE APPL
[2]  
BOURDON PS, UNPUB SOME ADJOINT F
[3]  
Cowen C., 1995, Composition operators on spaces of analytic functions
[4]   LINEAR FRACTIONAL COMPOSITION OPERATORS ON H-2 [J].
COWEN, CC .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1988, 11 (02) :151-160
[5]   COMMUTANT OF AN ANALYTIC TOEPLITZ OPERATOR [J].
COWEN, CC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 239 (MAY) :1-31
[6]  
DUREN P. L., 1970, Theory of Spaces
[7]   Adjoints of linear fractional composition operators on the Dirichlet space [J].
Gallardo-Gutiérrez, EA ;
Montes-Rodríguez, A .
MATHEMATISCHE ANNALEN, 2003, 327 (01) :117-134
[8]  
MacCluer, 1998, CONT MATH, V213, P17, DOI 10.1090/conm/213/02846
[9]  
MARTIN MJ, 2005, ADJOINTS COMPOSITION
[10]   Adjoints of a class of composition operators [J].
Mc Donald, JN .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (02) :601-606