Grain Size Effect of Bulk Nanocrystalline Pr0.5Nd0.5(Fe0.75Co0.1Cu0.01 Nb0.04Si0.05B0.05)1.93 Alloy Synthesized Under Ultrahigh Pressure

被引:1
作者
Hu, Cheng-Chao [1 ]
Zhang, Zhao [1 ]
Jiao, Jing-Jing [1 ]
Cai, Li-Chao [2 ]
Fu, Peng [1 ]
Chen, Hui [1 ]
Ni, Jun-Jie [1 ]
Li, Wei [1 ]
Shi, Yang-Guang [3 ]
机构
[1] Liaocheng Univ, Sch Mat Sci & Engn, Liaocheng 252059, Shandong, Peoples R China
[2] Junrui Super Hard Mat CO LTD, Liaocheng 252059, Shandong, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, Dept Appl Phys, Nanjing 210016, Peoples R China
关键词
Cubic Laves phase; Magnetostriction; Bulk nanocrystalline; GIANT MAGNETOSTRICTION; ANISOTROPY; DESIGN;
D O I
10.1007/s10948-020-05726-5
中图分类号
O59 [应用物理学];
学科分类号
摘要
Based on the light-rare-earth anisotropic compensation system, bulk nanocrystalline Pr0.5Nd0.5(Fe0.75Co0.1Cu0.01Nb0.04 Si0.05B0.05)(1.93) magnetostrictive alloys were synthesized by annealing its melt-spinning ribbons under different ultrahigh pressures. It was demonstrated that high-pressure annealing could effectively synthesize the wanted magnetostrictive phase and control the grain growth of Pr0.5Nd0.5(Fe0.75Co0.1Cu0.01Nb0.04Si0.05B0.05)(1.93) bulk nanocrystals. The average grain size decreased with annealing pressure increasing from 3 to 8 GPa, accompanied by a decrease in coercivity. The volume fraction of the cubic Laves phase, as well as grain size, synergistically affected the magnetoelastic response of the investigated bulk nanocrystalline magnetostrictive alloys. This work gives us an insight into the microstructure controlling of the bulk nanocrystalline magnetostrictive materials and provides a way to select suitable bulk nanocrystals to meet the different magnetostrictive applications.
引用
收藏
页码:261 / 267
页数:7
相关论文
共 32 条
[1]   Giant magnetostriction in Sm1-xNdxFe1.93 compounds [J].
Babu, V. Hari ;
Markandeyulu, G. ;
Subrahmanyam, A. .
APPLIED PHYSICS LETTERS, 2007, 90 (25)
[2]   Morphotropic Phase Boundaries in Ferromagnets: Tb1-xDyxFe2 Alloys [J].
Bergstrom, Richard, Jr. ;
Wuttig, Manfred ;
Cullen, James ;
Zavalij, Peter ;
Briber, Robert ;
Dennis, Cindi ;
Garlea, V. Ovidiu ;
Laver, Mark .
PHYSICAL REVIEW LETTERS, 2013, 111 (01)
[3]  
Clark A. E., 1980, Ferromagnetic materials. A handbook on the properties of magnetically ordered substances, vol.1, P531, DOI 10.1016/S1567-2719(80)01010-4
[4]  
CLARK AE, 1978, IEEE T MAGN, V14, P542, DOI 10.1109/TMAG.1978.1059879
[5]   Optimization of magnetostriction, coercive field and magnetic transition temperature in nanocrystalline TbDyFe plus Zr Nb multilayers [J].
Fischer, SF ;
Kelsch, M ;
Kronmüller, H .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 195 (03) :545-554
[6]   NEW MODEL FOR AMORPHOUS MAGNETISM [J].
HARRIS, R ;
PLISCHKE, M ;
ZUCKERMANN, MJ .
PHYSICAL REVIEW LETTERS, 1973, 31 (03) :160-162
[7]   SOFT-MAGNETIC NANOCRYSTALLINE MATERIALS [J].
HERZER, G .
SCRIPTA METALLURGICA ET MATERIALIA, 1995, 33 (10-11) :1741-1756
[8]   THEORY OF CRYSTAL GROWTH IN UNDERCOOLED PURE LIQUIDS [J].
HILLIG, WB ;
TURNBULL, D .
JOURNAL OF CHEMICAL PHYSICS, 1956, 24 (04) :914-914
[9]   Structural, magnetic and magnetostrictive behavior in Nd(Fe1-xCox)1.9 compounds [J].
Hu, C. C. ;
Shi, Y. G. ;
Zheng, T. F. ;
Fan, J. Y. ;
Shi, D. N. ;
Lv, L. Y. ;
Tang, S. L. .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (06)
[10]   Phase field simulation of grain size effects on the phase coexistence and magnetostrictive behavior near the ferromagnetic morphotropic phase boundary [J].
Hu, Cheng-Chao ;
Zhang, Zhao ;
Yang, Tian-Nan ;
Shi, Yang-Guang ;
Cheng, Xiao-Xing ;
Ni, Jun-Jie ;
Hao, Ji-Gong ;
Rao, Wei-Feng ;
Chen, Long-Qing .
APPLIED PHYSICS LETTERS, 2019, 115 (16)