A new class of double phase variable exponent problems: Existence and uniqueness

被引:149
作者
Crespo-Blanco, Angel [1 ]
Gasinski, Leszek [2 ]
Harjulehto, Petteri [3 ]
Winkert, Patrick [1 ]
机构
[1] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
[2] Pedag Univ Cracow, Dept Math, Podchorazych 2, PL-30084 Krakow, Poland
[3] Univ Turku, Dept Math & Stat, FI-20014 Turku, Finland
关键词
Density of smooth functions; Double phase operator with variable exponent; Convection term; Musielak-Orlicz Sobolev space; Existence results; Uniqueness; EMBEDDING-THEOREMS; HOLDER REGULARITY; GROWTH; FUNCTIONALS; MINIMIZERS; SPACES; CONVECTION; EQUATIONS; CALCULUS;
D O I
10.1016/j.jde.2022.03.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we introduce a new class of quasilinear elliptic equations driven by the so-called double phase operator with variable exponents. We prove certain properties of the corresponding Musielak-Orlicz Sobolev spaces (an equivalent norm, uniform convexity, Radon-Riesz property with respect to the modular) and the properties of the new double phase operator (continuity, strict monotonicity, (S+)-property). In contrast to the known constant exponent case we are able to weaken the assumptions on the data. Finally we show the existence and uniqueness of corresponding elliptic equations with right-hand sides that have gradient dependence (so-called convection terms) under very general assumptions on the data. As a result of independent interest, we also show the density of smooth functions in the new Musielak-Orlicz Sobolev space even when the domain is unbounded. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:182 / 228
页数:47
相关论文
共 71 条
[1]  
[Anonymous], 2006, Nonlinear potential theory of degenerate elliptic equations
[2]  
[Anonymous], 2011, J Math Sci, DOI DOI 10.1007/S10958-011-0260-7
[3]  
[Anonymous], 2007, Measure Theory, DOI DOI 10.1007/978-3-540-34514-5
[4]  
[Anonymous], 1978, Journes dAnalyse Non Linaire, DOI DOI 10.1007/BFB0061807
[5]  
[Anonymous], 2001, Measure and Integration Theory
[6]  
Arora R, 2020, GEN MATH MATHGM
[7]   Double phase problems with variable growth and convection for the Baouendi-Grushin operator [J].
Bahrouni, Anouar ;
Radulescu, Vicentiu D. ;
Winkert, Patrick .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (06)
[8]   Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves [J].
Bahrouni, Anouar ;
Radulescu, Vicentiu D. ;
Repovs, Dusan D. .
NONLINEARITY, 2019, 32 (07) :2481-2495
[9]   Elliptic problems with convection terms in Orlicz spaces [J].
Barletta, Giuseppina ;
Tornatore, Elisabetta .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 495 (02)
[10]   NON-AUTONOMOUS FUNCTIONALS, BORDERLINE CASES AND RELATED FUNCTION CLASSES [J].
Baroni, P. ;
Colombo, M. ;
Mingione, G. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (03) :347-379