Nucleotide-type chemical shift assignment of the encapsulated 40 kbp dsDNA in intact bacteriophage T7 by MAS solid-state NMR

被引:16
作者
Abramov, Gili [1 ]
Goldbourt, Amir [1 ]
机构
[1] Tel Aviv Univ, Sch Chem, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
Magic angle spinning; Solid state NMR; T7; bacteriophage; dsDNA; Chemical shift assignment; Virus; ANGLE-SPINNING NMR; DOUBLE-STRANDED DNA; RESONANCE ASSIGNMENT; SECONDARY STRUCTURE; HYDROGEN-BONDS; C-13; NMR; EXPERIMENTAL CONSTRAINTS; RNA NUCLEOSIDES; AMYLOID FIBRILS; HIGH-RESOLUTION;
D O I
10.1007/s10858-014-9840-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The icosahedral bacteriophage T7 is a 50 MDa double-stranded DNA (dsDNA) virus that infects Escherichia coli. Although there is substantial information on the physical and morphological properties of T7, structural information, based mostly on Raman spectroscopy and cryo-electron microscopy, is limited. Here, we apply the magic-angle spinning (MAS) solid-state NMR (SSNMR) technique to study a uniformly C-13 and N-15 labeled wild-type T7 phage. We describe the details of the large-scale preparation and purification of an isotopically enriched phage sample under fully hydrated conditions, and show a complete C-13 and a near-complete N-15 nucleotide-type specific assignment of the sugar and base moieties in the 40 kbp dsDNA of T7 using two-dimensional C-13-C-13 and N-15-C-13 correlation experiments. The chemical shifts are interpreted as reporters of a B-form conformation of the encapsulated dsDNA. While MAS SSNMR was found to be extremely useful in determining the structures of proteins in native-like environments, its application to nucleic acids has lagged behind, leaving a missing C-13 and N-15 chemical shift database. This work therefore expands the C-13 and N-15 database of real B-form DNA systems, and opens routes to characterize more complex nucleic acid systems by SSNMR.
引用
收藏
页码:219 / 230
页数:12
相关论文
共 95 条
[71]   13C-direct detected NMR experiments for the sequential J-based resonance assignment of RNA oligonucleotides [J].
Richter, Christian ;
Kovacs, Helena ;
Buck, Janina ;
Wacker, Anna ;
Fuertig, Boris ;
Bermel, Wolfgang ;
Schwalbe, Harald .
JOURNAL OF BIOMOLECULAR NMR, 2010, 47 (04) :259-269
[72]   TEDOR with adiabatic inversion pulses:: Resonance assignments of 13C/15N labelled RNAs [J].
Riedel, K ;
Leppert, J ;
Ohlenschläger, O ;
Görlach, M ;
Ramachandran, R .
JOURNAL OF BIOMOLECULAR NMR, 2005, 31 (01) :49-57
[73]   Homonuclear chemical shift correlation in rotating solids via RNvn symmetry-based adiabatic RF pulse schemes [J].
Riedel, K ;
Leppert, J ;
Häfner, S ;
Ohlenschläger, O ;
Görlach, M ;
Ramachandran, R .
JOURNAL OF BIOMOLECULAR NMR, 2004, 30 (04) :389-395
[74]   Calculation of 13C chemical shifts in RNA nucleosides:: Structure-13C chemical shift relationships [J].
Rossi, P ;
Harbison, GS .
JOURNAL OF MAGNETIC RESONANCE, 2001, 151 (01) :1-8
[75]   DETERMINATION OF THE DNA SUGAR PUCKER USING C-13 NMR-SPECTROSCOPY [J].
SANTOS, RA ;
TANG, P ;
HARBISON, GS .
BIOCHEMISTRY, 1989, 28 (24) :9372-9378
[76]  
Schmid F., 2001, ENCY LIFE SCI, DOI 10.1038/npg.els.0003142
[77]   Chemical Shifts for the Unusual DNA Structure in Pf1 Bacteriophage from Dynamic-Nuclear-Polarization-Enhanced Solid-State NMR Spectroscopy [J].
Sergeyev, Ivan V. ;
Day, Loren A. ;
Goldbourt, Amir ;
McDermott, Ann E. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (50) :20208-20217
[78]   De novo protein structure generation from incomplete chemical shift assignments [J].
Shen, Yang ;
Vernon, Robert ;
Baker, David ;
Bax, Ad .
JOURNAL OF BIOMOLECULAR NMR, 2009, 43 (02) :63-78
[79]   MAGIC-ANGLE SPINNING AND POLARIZATION TRANSFER IN PROTON-ENHANCED NMR [J].
STEJSKAL, EO ;
SCHAEFER, J ;
WAUGH, JS .
JOURNAL OF MAGNETIC RESONANCE, 1977, 28 (01) :105-112
[80]   GENETICS AND PHYSIOLOGY OF BACTERIOPHAGE T7 [J].
STUDIER, FW .
VIROLOGY, 1969, 39 (03) :562-&