Equidistribution of small points, rational dynamics, and potential theory

被引:74
作者
Baker, Matthew H. [1 ]
Rumely, Robert
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Univ Georgia, Dept Math, Athens, GA 30602 USA
关键词
canonical heights; rational dynamics; equidistribution; arithmetic dynamics; potential theory; capacity theory;
D O I
10.5802/aif.2196
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a rational function phi(T) on P-1 of degree at least 2 with coefficients in a number field k, we show that for each place nu of k, there is a unique probability measure mu(phi,nu) on the Berkovich space P-Berk, v(1)/C-nu such that if {z(n)} is a sequence of points in P-1((k) over bar) whose W-canonical heights tend to zero, then the z(n)'s and their Gal((k) over bar /k)-conjugates are equidistributed with respect to mu(phi, nu). The proof uses a polynomial lift F(x, y) = (F-1 (x, y), F-2 (x, y)) of phi to construct a two-variable Arakelov-Green's function g(phi, nu) (x, y) for each v. The measure mu(phi, nu) is obtained by taking the Berkovich space Laplacian of g(phi, nu) (x, y). The main ingredients in the proof are an energy minimization principle for g(phi, nu) (x, y) and a formula for the homogeneous transfinite diameter of the nu-adic filled Julia set K-F,K- nu subset of C-nu(2) for each place nu.
引用
收藏
页码:625 / 688
页数:64
相关论文
共 22 条
[1]  
Autissier P, 2001, J REINE ANGEW MATH, V531, P201
[2]  
Baker MH, 2005, J REINE ANGEW MATH, V585, P61
[3]   Limit distribution of small points on algebraic tori [J].
Bilu, Y .
DUKE MATHEMATICAL JOURNAL, 1997, 89 (03) :465-476
[4]   Canonical heights on projective space [J].
Call, GS ;
Goldstine, SW .
JOURNAL OF NUMBER THEORY, 1997, 63 (02) :211-243
[5]  
CALL GS, 1993, COMPOS MATH, V89, P163
[6]  
CHINBURG T, 1993, J REINE ANGEW MATH, V434, P1
[7]   Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity [J].
DeMarco, L .
MATHEMATISCHE ANNALEN, 2003, 326 (01) :43-73
[8]   CALCULUS ON ARITHMETIC SURFACES [J].
FALTINGS, G .
ANNALS OF MATHEMATICS, 1984, 119 (02) :387-424
[9]   Brolin's equidistribution theorem in p-adic dynamics. [J].
Favre, C ;
Rivera-Letelier, J .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (04) :271-276
[10]  
FREIRE A, 1983, B SOC BRASIL MAT, V14, P45