An Ambipolar Virtual-Source-Based Charge-Current Compact Model for Nanoscale Graphene Transistors

被引:49
作者
Rakheja, Shaloo [1 ]
Wu, Yanqing [2 ]
Wang, Han [2 ]
Palacios, Tomas [1 ]
Avouris, Phaedon [2 ]
Antoniadis, Dimitri A. [1 ]
机构
[1] MIT, Microsyst Technol Labs, Cambridge, MA 02139 USA
[2] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
基金
美国国家科学基金会;
关键词
Ambipolar transport; capacitance model; charge partitioning; graphene; quasi-ballistic transport; virtual-source model; HIGH-FREQUENCY; CARRIER TRANSPORT; PHYSICS;
D O I
10.1109/TNANO.2014.2344437
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A compact physics-based ambipolar-virtual-source (AVS) model is presented that describes carrier transport in both unipolar and ambipolar regimes in quasi-ballistic graphene field-effect transistors (GFETs). The transport model incorporates two separate virtual sources for electrons and holes and is supplemented by a self-consistent channel-charge-partitioning model valid from drift-diffusive to ballistic transport conditions. The model comprehends the asymmetry introduced by different contact resistances for electrons and holes. The AVS model has a limited number of parameters, most of which have a physical meaning and can easily be extracted from device characterization. The model has been extensively calibrated with experimental dc I-V and s-parameter measurements of devices with gate lengths from 650 to 40 nm. This has allowed the scaling of mobility and VS source injection velocity of carriers with gate length to be investigated for the first time. The new compact model yields continuous currents and charges and can easily be used in the design and analysis of circuits and systems implemented with GFETs.
引用
收藏
页码:1005 / 1013
页数:9
相关论文
共 32 条
[1]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[2]   Graphene-Based Frequency Tripler [J].
Chen, Hong-Yan ;
Appenzeller, Joerg .
NANO LETTERS, 2012, 12 (04) :2067-2070
[3]   An interior trust region approach for nonlinear minimization subject to bounds [J].
Coleman, TF ;
Li, YY .
SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (02) :418-445
[4]   Graphene: Exploring carbon flatland [J].
Geim, Andrey K. ;
MacDonald, Allan H. .
PHYSICS TODAY, 2007, 60 (08) :35-41
[5]   ON DEFINITION OF CUTOFF FREQUENCY-FT [J].
GUMMEL, HK .
PROCEEDINGS OF THE IEEE, 1969, 57 (12) :2159-&
[6]   Channel-Length-Dependent Transport Behaviors of Graphene Field-Effect Transistors [J].
Han, Shu-Jen ;
Chen, Zhihong ;
Bol, Ageeth A. ;
Sun, Yanning .
IEEE ELECTRON DEVICE LETTERS, 2011, 32 (06) :812-814
[7]   Explicit Drain Current, Charge and Capacitance Model of Graphene Field-Effect Transistors [J].
Jimenez, David .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2011, 58 (12) :4377-4383
[8]   Explicit Drain-Current Model of Graphene Field-Effect Transistors Targeting Analog and Radio-Frequency Applications [J].
Jimenez, David ;
Moldovan, Oana .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2011, 58 (11) :4049-4052
[9]   Linear scaling between momentum and spin scattering in graphene [J].
Jozsa, C. ;
Maassen, T. ;
Popinciuc, M. ;
Zomer, P. J. ;
Veligura, A. ;
Jonkman, H. T. ;
van Wees, B. J. .
PHYSICAL REVIEW B, 2009, 80 (24)
[10]   A Simple Semiempirical Short-Channel MOSFET Current-Voltage Model Continuous Across All Regions of Operation and Employing Only Physical Parameters [J].
Khakifirooz, Ali ;
Nayfeh, Osama M. ;
Antoniadis, Dimitri .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2009, 56 (08) :1674-1680