Ternary quadratic forms over number fields with small class number

被引:4
作者
Kirschmer, Markus [1 ]
Lorch, David [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math B, D-52062 Aachen, Germany
关键词
Quadratic form; Genus; Class number; Quaternion order; ONE-CLASS GENERA; QUATERNION ORDERS; LATTICES; DISCRIMINANT; ENUMERATION; ALGEBRAS; RINGS; BASE;
D O I
10.1016/j.jnt.2014.11.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We enumerate all positive definite ternary quadratic forms over number fields with class number at most 2. This is done by constructing all definite quaternion orders of type number at most 2 over number fields Finally, we list all definite quaternion orders of ideal class number 1 or 2. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:343 / 361
页数:19
相关论文
共 37 条
[1]  
[Anonymous], 1980, LECT NOTES MATH
[2]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[3]  
Brandt H., 1943, Jber. Deutscher Math. Vereing, V53, P23
[4]   Local corrections of discriminant bounds and small degree extensions of quadratic base fields [J].
Brueggeman, Sharon ;
Doud, Darrin .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (03) :349-361
[5]  
BRZEZINSKI J, 1980, MATH SCAND, V46, P183
[6]   ON ORDERS IN QUATERNION ALGEBRAS [J].
BRZEZINSKI, J .
COMMUNICATIONS IN ALGEBRA, 1983, 11 (05) :501-522
[7]   A CHARACTERIZATION OF GORENSTEIN ORDERS IN QUATERNION ALGEBRAS [J].
BRZEZINSKI, J .
MATHEMATICA SCANDINAVICA, 1982, 50 (01) :19-24
[8]  
Brzezinski J., 1995, J THEOR NOMBR BORDX, V7, P93, DOI DOI 10.5802/JTNB.132
[9]  
Deuring M., 1968, ERGEB MATH GRENZGEB, V41
[10]  
Dieudonne Jean., 1969, Linear algebra and geometry