Direct product of automorphism groups of colored graphs

被引:12
|
作者
Grech, M [1 ]
Kisielewicz, A [1 ]
机构
[1] Univ Wroclaw, Inst Math, PL-50384 Wroclaw, Poland
关键词
colored graph; automorphism group; direct product;
D O I
10.1016/j.disc.2003.11.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The concrete representation problem asks if a permutation group G on a set X is equal (permutation isomorphic) to the automorphism group of some colored graph with vertex set X. In this paper we consider how the representability of the direct product of permutation groups is connected with the representability of the factors. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:81 / 86
页数:6
相关论文
共 50 条
  • [2] Wreath product in automorphism groups of graphs
    Grech, Mariusz
    Kisielewicz, Andrzej
    JOURNAL OF GRAPH THEORY, 2022, 101 (01) : 29 - 51
  • [3] Direct Products of Automorphism Groups of Graphs
    Grech, Mariusz
    JOURNAL OF GRAPH THEORY, 2009, 62 (01) : 26 - 36
  • [4] Direct product of automorphism groups of digraphs
    Grech, Mariusz
    Imrich, Wilfried
    Krystek, Anna Dorota
    Wojakowski, Lukasz Jan
    ARS MATHEMATICA CONTEMPORANEA, 2019, 17 (01) : 89 - 101
  • [5] Cyclic Permutation Groups that are Automorphism Groups of Graphs
    Grech, Mariusz
    Kisielewicz, Andrzej
    GRAPHS AND COMBINATORICS, 2019, 35 (06) : 1405 - 1432
  • [6] Automorphism Groups in Polyhedral Graphs
    Ghorbani, Modjtaba
    Alidehi-Ravandi, Razie
    Dehmer, Matthias
    SYMMETRY-BASEL, 2024, 16 (09):
  • [7] Automorphism groups of the Pancake graphs
    Deng, Yun-Ping
    Zhang, Xiao-Dong
    INFORMATION PROCESSING LETTERS, 2012, 112 (07) : 264 - 266
  • [8] Cyclic Permutation Groups that are Automorphism Groups of Graphs
    Mariusz Grech
    Andrzej Kisielewicz
    Graphs and Combinatorics, 2019, 35 : 1405 - 1432
  • [9] Automorphism Groups of Geometrically Represented Graphs
    Klavik, Pavel
    Zeman, Peter
    32ND INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2015), 2015, 30 : 540 - 553
  • [10] On automorphism groups of graphs and distributive lattices
    S. Foldes
    algebra universalis, 1999, 41 : 115 - 120