Robust Liu estimator for regression based on an M-estimator

被引:31
作者
Arslan, O [1 ]
Billor, N [1 ]
机构
[1] Cukurova Univ, Dept Math, Fac Arts & Sci, TR-01130 Balcali Adana, Turkey
关键词
D O I
10.1080/02664760021817
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the regression model y = beta(0)1 + X beta + epsilon. Recently, the Liu estimator, which is an alternative biased estimator <(beta)over cap>(L)(d) = (X'X + I)(-1)(X'X + dI)<(beta)over cap>(OLS), where 0 < d < 1 is a parameter, has been proposed to overcome multicollinearity. The advantage of <(beta)over cap>(L)(d) over the ridge estimator <(beta)over cap>(R)(k), is that <(beta)over cap>(L)(d) is a linear function of d. Therefore, it is easier to choose d than to choose k in the ridge estimator However, <(beta)over cap>(L)(d) is obtained by shrinking the ordinary least squares (OLS) estimator using the matrix (X'X + I)(-1)(X'X + dI) so that the presence of outliers in the y direction may affect the <(beta)over cap>(L)(d) estimator. To cope with this combined problem of multicollinearity and outliers, we propose an alternative class of Liu-type M-estimators (LM-estimators) obtained by shrinking an M-estimator <(beta)over cap>(M), instead of the OLS estimator using the matrix (X'X + I)(-1)(X'X + dI).
引用
收藏
页码:39 / 47
页数:9
相关论文
共 9 条
[1]  
Hampel F. R., 1986, ROBUST STAT APPROACH
[2]   RIDGE REGRESSION - SOME SIMULATIONS [J].
HOERL, AE ;
KENNARD, RW ;
BALDWIN, KF .
COMMUNICATIONS IN STATISTICS, 1975, 4 (02) :105-123
[3]   RIDGE REGRESSION - APPLICATIONS TO NONORTHOGONAL PROBLEMS [J].
HOERL, AE ;
KENNARD, RW .
TECHNOMETRICS, 1970, 12 (01) :69-&
[4]   RIDGE REGRESSION - BIASED ESTIMATION FOR NONORTHOGONAL PROBLEMS [J].
HOERL, AE ;
KENNARD, RW .
TECHNOMETRICS, 1970, 12 (01) :55-&
[5]  
Huber P. J., 1981, ROBUST STAT
[6]  
LIU K, 1993, COMMUNICATIONS STA A, V225, P393
[7]  
Myers R., 1990, CLASSICAL MODERN REG
[8]  
Rousseeuw P.J., ROBUST REGRESSION OU
[9]  
Silvapulle M. J., 1991, AUST J STAT, V33, P319, DOI DOI 10.1111/J.1467-842X.1991.TB00438.X