Fluorine-Modified Porous Graphene as Membrane for CO2/N2 Separation: Molecular Dynamic and First-Principles Simulations

被引:113
作者
Wu, Tiantian [1 ,2 ]
Xue, Qingzhong [1 ,2 ]
Ling, Cuicui [2 ]
Shan, Meixia [2 ]
Liu, Zilong [2 ]
Tao, Yehan [2 ]
Li, Xiaofang [2 ]
机构
[1] China Univ Petr, State Key Lab Heavy Oil Proc, Qingdao 266580, Shandong, Peoples R China
[2] China Univ Petr, Coll Sci, Qingdao 266580, Shandong, Peoples R China
关键词
SINGLE-LAYER GRAPHENE; CO2; SEPARATION; CARBON-DIOXIDE; FUNCTIONALIZATION; PERFORMANCE; ADSORPTION; HYDROGEN; SORPTION; CAPTURE; MIXTURE;
D O I
10.1021/jp4096776
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It is demonstrated that the fluorine-modified porous graphene membrane has excellent selectivity for CO2/N-2 separation by using molecular dynamic (MD) simulations. We also investigated in detail the mechanism of the fluorine-modified porous graphene membrane for CO2/N-2 separation by using first-principles simulations. We find that the diffusion barriers for CO2 and N-2 to pass through the pore-22 (with 22 carbon atoms drilled out) graphene membrane are relatively small, which indicates that the pore-22 has a low selectivity for CO2/N-2 separation. After fluorine modification, the diffusion barrier for CO2 to pass through decreases to 0.029 eV, while the diffusion barrier for N-2 greatly increases to 0.116 eV. Therefore, N-2 gets more difficult, while CO2 gets easier to penetrate through the fluorine-modified pore-22. The fluorine-modified pore-22 porous graphene shows a great enhancement of selectivity for CO2/N-2 separation, which is consistent with the MD results. Our studies show that first-principles simulations can be well used to understand the MD results and propose an economical and efficient means of separating CO2 from N-2,N- which may be useful for designing new concept membranes for gas separation, like CO/N-2 and SO2/N-2 separations.
引用
收藏
页码:7369 / 7376
页数:8
相关论文
共 44 条
  • [1] Properties of graphene: a theoretical perspective
    Abergel, D. S. L.
    Apalkov, V.
    Berashevich, J.
    Ziegler, K.
    Chakraborty, Tapash
    [J]. ADVANCES IN PHYSICS, 2010, 59 (04) : 261 - 482
  • [2] Honeycomb Carbon: A Review of Graphene
    Allen, Matthew J.
    Tung, Vincent C.
    Kaner, Richard B.
    [J]. CHEMICAL REVIEWS, 2010, 110 (01) : 132 - 145
  • [3] Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification
    Bae, Youn-Sang
    Farha, Omar K.
    Hupp, Joseph T.
    Snurr, Randall Q.
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (15) : 2131 - 2134
  • [4] Sorption kinetics of eight gases on a carbon molecular sieve at elevated pressure
    Bae, YS
    Lee, CH
    [J]. CARBON, 2005, 43 (01) : 95 - 107
  • [5] Transition-Metal Decoration Enhanced Room-Temperature Hydrogen Storage in a Defect-Modulated Graphene Sheet
    Bhattacharya, A.
    Bhattacharya, S.
    Majumder, C.
    Das, G. P.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (22) : 10297 - 10301
  • [6] Noble Gas Separation using PG-ESX (X=1, 2, 3) Nanoporous Two-Dimensional Polymers
    Brockway, Anna M.
    Schrier, Joshua
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (01) : 393 - 402
  • [7] Porous Carbon Nanotube Membranes for Separation of H2/CH4 and CO2/CH4 Mixtures
    Bucior, Benjamin J.
    Chen, De-Li
    Liu, Jinchen
    Johnson, J. Karl
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (49) : 25904 - 25910
  • [8] Impermeable atomic membranes from graphene sheets
    Bunch, J. Scott
    Verbridge, Scott S.
    Alden, Jonathan S.
    van der Zande, Arend M.
    Parpia, Jeevak M.
    Craighead, Harold G.
    McEuen, Paul L.
    [J]. NANO LETTERS, 2008, 8 (08) : 2458 - 2462
  • [9] Tuneable electronic properties in graphene
    Craciun, M. F.
    Russo, S.
    Yamamoto, M.
    Tarucha, S.
    [J]. NANO TODAY, 2011, 6 (01) : 42 - 60
  • [10] Intrinsic Response of Graphene Vapor Sensors
    Dan, Yaping
    Lu, Ye
    Kybert, Nicholas J.
    Luo, Zhengtang
    Johnson, A. T. Charlie
    [J]. NANO LETTERS, 2009, 9 (04) : 1472 - 1475