Numerically Based Phase Transformation Maps for Dissimilar Aluminum Alloys Joined by Friction Stir-Welding

被引:13
作者
Hamilton, Carter [1 ]
Dymek, Stanislaw [2 ]
Kopyscianiski, Mateusz [2 ]
Weglowska, Aleksandra [3 ]
Pietras, Adam [3 ]
机构
[1] Miami Univ, Coll Engn & Comp, Dept Mech & Mfg Engn, Oxford, OH 45056 USA
[2] AGH Univ Sci & Technol, Fac Met Engn & Ind Comp Sci, PL-30059 Krakow, Poland
[3] Welding Inst, Dept Testing Mat Weldabil & Welded Construct, PL-44100 Gliwice, Poland
关键词
friction stir-welding; dissimilar materials; aluminum; material flow; temperature; phase transformations; POSITRON LIFETIME;
D O I
10.3390/met8050324
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Sheets of aluminum 2017A-T451 and 7075-T651 were friction stir-welded in a butt-weld configuration. An existing computational model of the welding process for temperature distribution and material flow was adapted to estimate the phase transformations that occur across the weld zone. Near the weld center, process temperatures are sufficient to fully dissolve the equilibrium h phase in 7075 and partially dissolve the equilibrium S phase in 2017A. Upon cooling, Guinier-Preston (GP) and Guinier-Preston-Bagaryatsky (GPB) zones re-precipitate, and hardness recovers. Due to the more complete dissolution of the equilibrium phase in 7075, the hardness recovery skews toward whichever side of the weld, i.e., the advancing or retreating side, represents the 7075 workpiece. Phase transformation maps generated by the numerical simulation align not only with the hardness profiles taken across the weld zone, but also with positron lifetimes obtained through positron annihilation lifetime spectroscopy (PALS). Boundaries between the aluminum matrix and the secondary phases provide open volumes to trap positrons; therefore, positron lifetimes across the weld correspond with the phase transformations that occur in 7075 and 2017A during processing.
引用
收藏
页数:14
相关论文
共 23 条
[1]  
[Anonymous], FRICTION STIR WELDIN
[2]   Friction stir welding of dissimilar alloys - a perspective [J].
DebRoy, T. ;
Bhadeshia, H. K. D. H. .
SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2010, 15 (04) :266-270
[3]   Positron lifetime studies of decomposition in 2024 (Al-Cu-Mg) and 7010 (Al-Zn-Cu-Mg) alloys [J].
Dlubek, G ;
Lademann, P ;
Krause, H ;
Krause, S ;
Unger, R .
SCRIPTA MATERIALIA, 1998, 39 (07) :893-899
[4]  
Dlubek G, 1998, PHYS STATUS SOLIDI A, V169, pR11, DOI 10.1002/(SICI)1521-396X(199810)169:2<R11::AID-PSSA999911>3.0.CO
[5]  
2-J
[6]   Microstructure mapping in friction stir welds of 7449 aluminium alloy using SAXS [J].
Dumont, M. ;
Steuwer, A. ;
Deschamps, A. ;
Peel, M. ;
Withers, P. J. .
ACTA MATERIALIA, 2006, 54 (18) :4793-4801
[7]   Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds [J].
Genevois, C ;
Deschamps, A ;
Denquin, A ;
Doisneau-cottignies, B .
ACTA MATERIALIA, 2005, 53 (08) :2447-2458
[8]   Application of positron lifetime annihilation spectroscopy for characterization of friction stir welded dissimilar aluminum alloys [J].
Hamilton, C. ;
Dymek, S. ;
Dryzek, E. ;
Kopyscianski, M. ;
Pietras, A. ;
Weglowska, A. ;
Wrobel, M. .
MATERIALS CHARACTERIZATION, 2017, 132 :431-436
[9]   A Numerical Simulation for Dissimilar Aluminum Alloys Joined by Friction Stir Welding [J].
Hamilton, Carter ;
Kopyscianski, Mateusz ;
Weglowska, Aleksandra ;
Dymek, Stanislaw ;
Pietras, Adam .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2016, 47A (09) :4519-4529
[10]   Natural aging in friction stir welded 7136-T76 aluminum alloy [J].
Kalemba, Izabela ;
Hamilton, Carter ;
Dymek, Stanislaw .
MATERIALS & DESIGN, 2014, 60 :295-301