Tools for computing tangent curves for linearly varying vector fields over tetrahedral domains

被引:27
作者
Nielson, GM [1 ]
Jung, IH [1 ]
机构
[1] Arizona State Univ, Dept Comp Sci & Engn, Tempe, AZ 85287 USA
关键词
visualization; flow fields; streamlines; tangent curves; vector fields; phase plane; phase volume; critical points; tetrahedral grids;
D O I
10.1109/2945.817352
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present some very efficient and accurate methods for computing tangent curves for three-dimensional flows. Our methods work directly in physical coordinates, eliminating the usual need to switch back and forth with computational coordinates. Unlike conventional methods. such as Runge-Kutta, for computing tangent curves which give only approximations, our methods produce exact values based upon piece-wise linear variation over a tetrahedrization of the domain of interest. We use barycentric coordinates in order to efficiently track cell-to-cell movement of the tangent curves.
引用
收藏
页码:360 / 372
页数:13
相关论文
共 10 条
[1]  
[Anonymous], DYNAMICS GEOMETRY BE
[2]  
Globus A., 1991, Proceedings Visualization '91 (Cat. No.91CH3046-0), P33, DOI 10.1109/VISUAL.1991.175773
[3]  
Hamann B., 1997, SCI VISUALIZATION OV, P59
[4]  
HELME RD, 1989, AUSTR J AGEING, V8, P27
[5]  
Kenwright DN, 1995, VISUALIZATION '95 - PROCEEDINGS, P321, DOI 10.1109/VISUAL.1995.485145
[6]  
Nielson G., 1997, SCI VISUALIZATION OV, P429
[7]  
NIELSON GM, 1997, SCI VISUALIZATION OV, P527
[8]  
Post FH, 1993, FOCUS SCI VISUALIZAT, P1
[9]  
SADARJOEN A, 1997, SCI VISUALIZATION OV, P311
[10]   Efficient streamline, streamribbon, and streamtube constructions on unstructured grids [J].
Ueng, SK ;
Sikorski, C ;
Ma, KL .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 1996, 2 (02) :100-110