EXTENDED GENERALIZED MITTAG-LEFFLER FUNCTION APPLIED ON FRACTIONAL INTEGRAL INEQUALITIES

被引:1
|
作者
Andric, Maja [1 ]
Farid, Ghulam [2 ]
Pecaric, Josip [3 ]
Siddique, Muhammad Usama [2 ]
机构
[1] Univ Split, Fac Civil Engn Architecture & Geodesy, Split 21000, Croatia
[2] COMSATS Univ Islamabad, Dept Math, Attock Campus, Islamabad, Pakistan
[3] RUDN Univ, Miklukho Maklaya Str 6, Moscow 117198, Russia
来源
关键词
Mittag-Leffler function; fractional integral operator; monotone function; EXTENSION;
D O I
10.4134/CKMS.c200073
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents several fractional generalizations and extensions of known integral inequalities. To obtain these, an extended generalized Mittag-Leffler function and its fractional integral operator are used.
引用
收藏
页码:1171 / 1184
页数:14
相关论文
共 50 条
  • [31] On Refinement of Bounds of Fractional Integral Operators Containing Extended Generalized Mittag-Leffler Functions
    Demirel, Ayse Kuebra
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2024, 21 (03): : 279 - 300
  • [33] Fractional differential equations for the generalized Mittag-Leffler function
    Agarwal, Praveen
    Al-Mdallal, Qasem
    Cho, Yeol Je
    Jain, Shilpi
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [34] Fractional differential equations for the generalized Mittag-Leffler function
    Praveen Agarwal
    Qasem Al-Mdallal
    Yeol Je Cho
    Shilpi Jain
    Advances in Difference Equations, 2018
  • [35] Generalizations of some fractional integral inequalities for m-convex functions via generalized Mittag-Leffler function
    Farid, Ghulam
    Abbas, Ghulam
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2018, 63 (01): : 23 - 35
  • [36] Fractional Differintegral Operators of The Generalized Mittag-Leffler Function
    Gupta, Anjali
    Parihar, C. L.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2015, 33 (01): : 137 - 144
  • [37] UNIFIED FRACTIONAL INTEGRAL FORMULAE FOR THE GENERALIZED MITTAG-LEFFLER FUNCTIONS
    Suthar, Daya Lal
    Purohit, Sunil Dutt
    JOURNAL OF SCIENCE AND ARTS, 2014, (02): : 117 - 124
  • [38] Inequalities of the Ostrowski Type Associated with Fractional Integral Operators Containing the Mittag-Leffler Function
    Chen, Dong
    Mehmood, Sajid
    Farid, Ghulam
    Nonlaopon, Kamsing
    SYMMETRY-BASEL, 2022, 14 (12):
  • [39] Some integral inequalities for m-convex functions via generalized fractional integral operator containing generalized Mittag-Leffler function
    Abbas, G.
    Farid, G.
    COGENT MATHEMATICS, 2016, 3
  • [40] GENERALIZATIONS OF SOME CLASSICAL INTEGRAL INEQUALITIES CONTAINING EXTENDED MITTAG-LEFFLER FUNCTION IN THE KERNEL
    Andric, Maja
    Farid, Ghulam
    Pecaric, Josip
    Siddique, Muhammad Usama
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2021, 12 (02): : 1 - 11