EXTENDED GENERALIZED MITTAG-LEFFLER FUNCTION APPLIED ON FRACTIONAL INTEGRAL INEQUALITIES

被引:1
|
作者
Andric, Maja [1 ]
Farid, Ghulam [2 ]
Pecaric, Josip [3 ]
Siddique, Muhammad Usama [2 ]
机构
[1] Univ Split, Fac Civil Engn Architecture & Geodesy, Split 21000, Croatia
[2] COMSATS Univ Islamabad, Dept Math, Attock Campus, Islamabad, Pakistan
[3] RUDN Univ, Miklukho Maklaya Str 6, Moscow 117198, Russia
来源
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY | 2020年 / 35卷 / 04期
关键词
Mittag-Leffler function; fractional integral operator; monotone function; EXTENSION;
D O I
10.4134/CKMS.c200073
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents several fractional generalizations and extensions of known integral inequalities. To obtain these, an extended generalized Mittag-Leffler function and its fractional integral operator are used.
引用
收藏
页码:1171 / 1184
页数:14
相关论文
共 50 条
  • [31] Fractional derivatives of the generalized Mittag-Leffler functions
    Denghao Pang
    Wei Jiang
    Azmat U. K. Niazi
    Advances in Difference Equations, 2018
  • [32] Fractional derivatives of the generalized Mittag-Leffler functions
    Pang, Denghao
    Jiang, Wei
    Niazi, Azmat U. K.
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [33] New Integral Transforms of the Extended k- Generalized Mittag-Leffler Function with Graphical Representations
    D'Costa, Liya
    Menaria, Naresh
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (04): : 4164 - 4179
  • [34] A New Class of Integrals Connected with Polynomials and Extended Generalized Mittag-Leffler Function
    Jangid, Nirmal Kumar
    Joshi, Sunil
    Mittal, Ekta
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2024, 21 (03): : 55 - 64
  • [35] Fractional Integral Inequalities of Hermite-Hadamard Type for (h,g;m)-Convex Functions with Extended Mittag-Leffler Function
    Andric, Maja
    FRACTAL AND FRACTIONAL, 2022, 6 (06)
  • [36] Fractional Integrations of a Generalized Mittag-Leffler Type Function and Its Application
    Nisar, Kottakkaran Sooppy
    MATHEMATICS, 2019, 7 (12)
  • [37] On Extended General Mittag-Leffler Functions and Certain Inequalities
    Mihai, Marcela, V
    Awan, Muhammad Uzair
    Noor, Muhammad Aslam
    Du, Tingsong
    Kashuri, Artion
    Noor, Khalida Inayat
    FRACTAL AND FRACTIONAL, 2019, 3 (02) : 1 - 17
  • [39] ON EXTENDED k-GENERALIZED MITTAG-LEFFLER FUNCTION AND ITS PROPERTIES
    Jain, Shilpi
    Jaimini, B. B.
    Buri, Meenu
    Agarwal, Praveen
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2023, : 472 - 479
  • [40] Generalized k-Fractional Chebyshev-Type Inequalities via Mittag-Leffler Functions
    Zhang, Zhiqiang
    Farid, Ghulam
    Mehmood, Sajid
    Jung, Chahn-Yong
    Yan, Tao
    AXIOMS, 2022, 11 (02)