EXTENDED GENERALIZED MITTAG-LEFFLER FUNCTION APPLIED ON FRACTIONAL INTEGRAL INEQUALITIES

被引:1
作者
Andric, Maja [1 ]
Farid, Ghulam [2 ]
Pecaric, Josip [3 ]
Siddique, Muhammad Usama [2 ]
机构
[1] Univ Split, Fac Civil Engn Architecture & Geodesy, Split 21000, Croatia
[2] COMSATS Univ Islamabad, Dept Math, Attock Campus, Islamabad, Pakistan
[3] RUDN Univ, Miklukho Maklaya Str 6, Moscow 117198, Russia
来源
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY | 2020年 / 35卷 / 04期
关键词
Mittag-Leffler function; fractional integral operator; monotone function; EXTENSION;
D O I
10.4134/CKMS.c200073
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents several fractional generalizations and extensions of known integral inequalities. To obtain these, an extended generalized Mittag-Leffler function and its fractional integral operator are used.
引用
收藏
页码:1171 / 1184
页数:14
相关论文
共 12 条
[1]   A FURTHER EXTENSION OF MITTAG-LEFFLER FUNCTION [J].
Andric, Maja ;
Farid, Ghulam ;
Pecaric, Josip .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (05) :1377-1395
[2]   A NEW EXTENSION OF THE MITTAG-LEFFLER FUNCTION [J].
Arshad, Muhammad ;
Choi, Junesang ;
Mubeen, Shahid ;
Nisar, Kottakkaran Sooppy ;
Rahman, Gauhar .
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (02) :549-560
[3]   NEW CLASSES OF INTEGRAL INEQUALITIES OF FRACTIONAL ORDER [J].
Dahmani, Zoubir .
MATEMATICHE, 2014, 69 (01) :237-247
[4]  
Kilbas AA., 2006, THEORY APPL FRACTION
[5]   SEVERAL INTERESTING INTEGRAL INEQUALITIES [J].
Liu, Wenjun ;
Ngo, Quoc-Anh ;
Vu Nhat Huy .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2009, 3 (02) :201-212
[6]   Fractional calculus operators with Appell function kernels applied to Srivastava polynomials and extended Mittag-Leffler function [J].
Nisar, Kottakkaran Sooppy ;
Suthar, D. L. ;
Agarwal, R. ;
Purohit, S. D. .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[7]  
NISAR KS, 2019, MATHEMATICS-BASEL, V7, DOI DOI 10.3390/math7121230
[8]  
Prabhakar TR., 1971, A Singular Integral Equation with a Generalized Mittag-Leffler Function in the Kernel
[9]   The extended Mittag-Leffler function via fractional calculus [J].
Rahman, Gauhar ;
Baleanu, Dumitru ;
Al Qurashi, Maysaa ;
Purohit, Sunil Dutt ;
Mubeen, Shahid ;
Arshad, Muhammad .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (08) :4244-4253
[10]  
Salim T.O., 2012, J FRACTIONAL CALCULU, V3, P1