Discrete Schrodinger equations with sign-changing nonlinearities: Infinitely many homo clinic solutions

被引:18
作者
Jia, Liqian [1 ]
Chen, Guanwei [1 ]
机构
[1] Univ Jinan, Sch Math Sci, Jinan 250022, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Discrete nonlinear Schrodinger equations; Superlinear; Homoclinic solutions; Variational methods; GAP SOLITONS; HOMOCLINIC SOLUTIONS; EXISTENCE;
D O I
10.1016/j.jmaa.2017.03.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain infinitely many homoclinic solutions for a class of discrete nonlinear Schrodinger equations, where nonlinearities are superlinear at infinity and primitive functions of nonlinearities are allowed to be sign-changing. By using some weaker conditions, our results extend and improve some existed results in the literature. Besides, some examples are given to illuminate our results. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:568 / 577
页数:10
相关论文
共 30 条
[1]   ABSTRACT CRITICAL-POINT THEOREMS AND APPLICATIONS TO SOME NON-LINEAR PROBLEMS WITH STRONG RESONANCE AT INFINITY [J].
BARTOLO, P ;
BENCI, V ;
FORTUNATO, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (09) :981-1012
[2]   Standing waves for discrete Schrodinger equations in infinite lattices with saturable nonlinearities [J].
Chen, Guanwei ;
Ma, Shiwang ;
Wang, Zhi-Qiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (06) :3493-3518
[3]   Non-periodic discrete Schrodinger equations: ground state solutions [J].
Chen, Guanwei ;
Schechter, Martin .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03)
[4]   Homoclinic solutions of discrete nonlinear Schrodinger equations with asymptotically or super linear terms [J].
Chen, Guanwei ;
Ma, Shiwang .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 :787-798
[5]   Ground State and Geometrically Distinct Solitons of Discrete Nonlinear Schrodinger Equations with Saturable Nonlinearities [J].
Chen, Guanwei ;
Ma, Shiwang .
STUDIES IN APPLIED MATHEMATICS, 2013, 131 (04) :389-413
[6]   Discrete nonlinear Schrodinger equations with superlinear nonlinearities [J].
Chen, Guanwei ;
Ma, Shiwang .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) :5496-5507
[7]   Discretizing light behaviour in linear and nonlinear waveguide lattices [J].
Christodoulides, DN ;
Lederer, F ;
Silberberg, Y .
NATURE, 2003, 424 (6950) :817-823
[8]  
Jia L., 2016, ADV DIFFERENCE EQU, V2016
[9]  
Kopidakis G., 2001, PHYS REV LETT, V87, P175
[10]  
Livi R., 2006, PHYS REV LETT, V97, P3633