Sparse representation based latent components analysis for machinery weak fault detection

被引:101
作者
Tang, Haifeng [1 ]
Chen, Jin [1 ]
Dong, Guangming [1 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Sparse representation; Dictionary learning; Weak fault detection; Latent components; Rolling element bearing; Gear; ATOMIC DECOMPOSITION; WAVELET TRANSFORM; DIAGNOSIS; FREQUENCY; FAILURE; ENTROPY; SIGNALS;
D O I
10.1016/j.ymssp.2014.01.011
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Weak machinery fault detection is a difficult task because of two main reasons (1) At the early stage of fault development, signature of fault related component performs incompletely and is quite different from that at the apparent failure stage. In most instances, it seems almost identical with the normal operating state. (2) The fault feature is always submerged and distorted by relatively strong background noise and macro-structural vibrations even if the fault component already performs completely, especially when the structure of fault components and interference are close. To solve these problems, we should penetrate into the underlying structure of the signal. Sparse representation provides a class of algorithms for finding succinct representations of signal that capture higher-level features in the data With the purpose of extracting incomplete or seriously overwhelmed fault components, a sparse representation based latent components decomposition method is proposed in this paper. As a special case of sparse representation, shift-invariant sparse coding algorithm provides an effective basis functions learning scheme for capturing the underlying structure of machinery fault signal by iteratively solving two convex optimization problems: an L1-regularized least squares problem and an L2-constrained least squares problem. Among these basis functions, fault feature can be probably contained and extracted if optimal latent component is filtered. The proposed scheme is applied to analyze vibration signals of both rolling bearings and gears. Experiment of accelerated lifetime test of bearings validates the proposed method's ability of detecting early fault. Besides, experiments of fault bearings and gears with heavy noise and interference show the approach can effectively distinguish subtle differences between defect and interference. All the experimental data are analyzed by wavelet shrinkage and basis pursuit de-noising (BPDN) method for comparison. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:373 / 388
页数:16
相关论文
共 36 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]   Cyclic spectral analysis of rolling-element bearing signals: Facts and fictions [J].
Antoni, J. .
JOURNAL OF SOUND AND VIBRATION, 2007, 304 (3-5) :497-529
[3]   The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines [J].
Antoni, J ;
Randall, RB .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2006, 20 (02) :308-331
[4]   A comparison of autoregressive modeling techniques for fault diagnosis of rolling element bearings [J].
Baillie, DC ;
Mathew, J .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1996, 10 (01) :1-17
[5]   ESTIMATING AND INTERPRETING THE INSTANTANEOUS FREQUENCY OF A SIGNAL .1. FUNDAMENTALS [J].
BOASHASH, B .
PROCEEDINGS OF THE IEEE, 1992, 80 (04) :520-538
[6]   Atomic decomposition by basis pursuit [J].
Chen, SSB ;
Donoho, DL ;
Saunders, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :33-61
[7]   DE-NOISING BY SOFT-THRESHOLDING [J].
DONOHO, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (03) :613-627
[8]   For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution [J].
Donoho, DL .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (06) :797-829
[9]   Uncertainty principles and ideal atomic decomposition [J].
Donoho, DL ;
Huo, XM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) :2845-2862
[10]   Single-pixel imaging via compressive sampling [J].
Duarte, Marco F. ;
Davenport, Mark A. ;
Takhar, Dharmpal ;
Laska, Jason N. ;
Sun, Ting ;
Kelly, Kevin F. ;
Baraniuk, Richard G. .
IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (02) :83-91