Raman phonon emission in a driven double quantum dot

被引:19
作者
Colless, J. I. [1 ]
Croot, X. G. [1 ]
Stace, T. M. [2 ]
Doherty, A. C. [1 ]
Barrett, S. D. [3 ,4 ]
Lu, H. [5 ]
Gossard, A. C. [5 ]
Reilly, D. J. [1 ]
机构
[1] Univ Sydney, Sch Phys, ARC Ctr Excellence Engn Quantum Syst, Sydney, NSW 2006, Australia
[2] Univ Queensland, Sch Math & Phys, ARC Ctr Excellence Engn Quantum Syst, Brisbane, Qld 4072, Australia
[3] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2PG, England
[4] Univ London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2PG, England
[5] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
基金
澳大利亚研究理事会;
关键词
SPINS; MANIPULATION; STATES; QUBIT;
D O I
10.1038/ncomms4716
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The compound semiconductor gallium-arsenide (GaAs) provides an ultra-clean platform for storing and manipulating quantum information, encoded in the charge or spin states of electrons confined in nanostructures. The absence of inversion symmetry in the zinc-blende crystal structure of GaAs however, results in a strong piezoelectric interaction between lattice acoustic phonons and qubit states with an electric dipole, a potential source of decoherence during charge-sensitive operations. Here we report phonon generation in a GaAs double quantum dot, configured as a single- or two-electron charge qubit, and driven by the application of microwaves via surface gates. In a process that is a microwave analogue of the Raman effect, phonon emission produces population inversion of the two-level system and leads to rapid decoherence of the qubit when the microwave energy exceeds the level splitting. Comparing data with a theoretical model suggests that phonon emission is a sensitive function of the device geometry.
引用
收藏
页数:6
相关论文
共 33 条
[1]   Quasi-two-dimensional optomechanical crystals with a complete phononic bandgap [J].
Alegre, Thiago P. Mayer ;
Safavi-Naeini, Amir ;
Winger, Martin ;
Painter, Oskar .
OPTICS EXPRESS, 2011, 19 (06) :5658-5669
[2]   Continuous measurement of a microwave-driven solid state qubit [J].
Barrett, SD ;
Stace, TM .
PHYSICAL REVIEW LETTERS, 2006, 96 (01)
[3]   QUANTUM COMPUTING Solid-state spins survive [J].
Biercuk, Michael J. ;
Reilly, David J. .
NATURE NANOTECHNOLOGY, 2011, 6 (01) :9-11
[4]   Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs [J].
Bluhm, Hendrik ;
Foletti, Sandra ;
Neder, Izhar ;
Rudner, Mark ;
Mahalu, Diana ;
Umansky, Vladimir ;
Yacoby, Amir .
NATURE PHYSICS, 2011, 7 (02) :109-113
[5]   Spontaneous emission of phonons by coupled quantum dots [J].
Brandes, T ;
Kramer, B .
PHYSICAL REVIEW LETTERS, 1999, 83 (15) :3021-3024
[6]   Spin relaxation and anticrossing in quantum dots: Rashba versus Dresselhaus spin-orbit coupling [J].
Bulaev, DV ;
Loss, D .
PHYSICAL REVIEW B, 2005, 71 (20)
[7]   Cryogenic high-frequency readout and control platform for spin qubits [J].
Colless, J. I. ;
Reilly, D. J. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (02)
[8]   Nanometre-scale electronics with III-V compound semiconductors [J].
del Alamo, Jesus A. .
NATURE, 2011, 479 (7373) :317-323
[9]  
Dykman M. I., 1979, SOV J LOW TEMP PHYS, V5, P89
[10]   Error rate of a charge qubit coupled to an acoustic phonon reservoir [J].
Fedichkin, L ;
Fedorov, A .
PHYSICAL REVIEW A, 2004, 69 (03) :032311-1