Anchoring anions with metal-organic framework-functionalized separators for advanced lithium batteries

被引:76
作者
Shen, Li [1 ]
Wu, Hao Bin [2 ]
Liu, Fang [1 ]
Zhang, Chen [1 ]
Ma, Shengxiang [1 ]
Le, Zaiyuan [1 ]
Lu, Yunfeng [1 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biomol Engn, 420 Westwood Plaza, Los Angeles, CA 90095 USA
[2] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou, Zhejiang, Peoples R China
关键词
LI-ION BATTERIES; HIGH-ENERGY; TRANSFERENCE NUMBER; ELECTROLYTE; CONDUCTIVITY; PERFORMANCE; CHALLENGES; TRANSPORT; MEMBRANE; UIO-66;
D O I
10.1039/c8nh00342d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The low Li+ transference number (t(Li)(+)), or the relatively small proportion of Li+ conductivity with respect to total ionic conductivity, has been identified as a key drawback of binary electrolytes. The lack of approaches to restrain anion mobility results in the poor cyclability of energy-dense electrodes as the high rate of anion movement induces concentration polarization. Herein, we propose regulating the ion conduction behavior using a nanocomposite separator fabricated via the functionalization of a glass fiber (GF) separator with a metal-organic framework (MOF). The open metal sites in the MOF serve as the anchoring sites for anions, and the resulting t(Li)(+) is increased by 100%. The MOF-functionalized nanocomposite separator with high t(Li)(+) substantially improves the electrochemical performance of a Li metal anode, with an areal capacity exceeding 2 mA h cm(-2), and intercalation-type electrodes (LiFePO4 and Li4Ti5O12), with high active material loadings of 45 mg cm(-2).
引用
收藏
页码:705 / 711
页数:7
相关论文
共 37 条
[1]   Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries [J].
Albertus, Paul ;
Babinec, Susan ;
Litzelman, Scott ;
Newman, Aron .
NATURE ENERGY, 2018, 3 (01) :16-21
[2]   Ionic Conductivity in the Metal-Organic Framework UiO-66 by Dehydration and Insertion of Lithium tert-Butoxide [J].
Ameloot, Rob ;
Aubrey, Michael ;
Wiers, Brian M. ;
Gomora-Figueroa, Ana P. ;
Patel, Shrayesh N. ;
Balsara, Nitash P. ;
Long, Jeffrey R. .
CHEMISTRY-A EUROPEAN JOURNAL, 2013, 19 (18) :5533-5536
[3]   Design of electrolyte solutions for Li and Li-ion batteries: a review [J].
Aurbach, D ;
Talyosef, Y ;
Markovsky, B ;
Markevich, E ;
Zinigrad, E ;
Asraf, L ;
Gnanaraj, JS ;
Kim, HJ .
ELECTROCHIMICA ACTA, 2004, 50 (2-3) :247-254
[4]   Batteries and fuel cells for emerging electric vehicle markets [J].
Cano, Zachary P. ;
Banham, Dustin ;
Ye, Siyu ;
Hintennach, Andreas ;
Lu, Jun ;
Fowler, Michael ;
Chen, Zhongwei .
NATURE ENERGY, 2018, 3 (04) :279-289
[5]   ELECTROCHEMICAL ASPECTS OF THE GENERATION OF RAMIFIED METALLIC ELECTRODEPOSITS [J].
CHAZALVIEL, JN .
PHYSICAL REVIEW A, 1990, 42 (12) :7355-7367
[6]   Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries [J].
Cheng, Xin-Bing ;
Hou, Ting-Zheng ;
Zhang, Rui ;
Peng, Hong-Jie ;
Zhao, Chen-Zi ;
Huang, Jia-Qi ;
Zhang, Qiang .
ADVANCED MATERIALS, 2016, 28 (15) :2888-2895
[7]   Excellent rate capability and cycle life of Li metal batteries with ZrO2/POSS multilayer-assembled PE separators [J].
Chi, Mingming ;
Shi, Liyi ;
Wang, Zhuyi ;
Zhu, Jiefang ;
Mao, Xufeng ;
Zhao, Yin ;
Zhang, Meihong ;
Sun, Lining ;
Yuan, Shuai .
NANO ENERGY, 2016, 28 :1-11
[8]   Promising Routes to a High Li+ Transference Number Electrolyte for Lithium Ion Batteries [J].
Diederichsen, Kyle M. ;
McShane, Eric J. ;
McCloskey, Bryan D. .
ACS ENERGY LETTERS, 2017, 2 (11) :2563-2575
[9]   THE IMPORTANCE OF THE LITHIUM ION TRANSFERENCE NUMBER IN LITHIUM POLYMER CELLS [J].
DOYLE, M ;
FULLER, TF ;
NEWMAN, J .
ELECTROCHIMICA ACTA, 1994, 39 (13) :2073-2081
[10]   Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries [J].
Du, Zhijia ;
Wood, D. L., III ;
Daniel, C. ;
Kalnaus, S. ;
Li, Jianlin .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2017, 47 (03) :405-415